Java/Collections Data Structure/Heaps

Материал из Java эксперт
Перейти к: навигация, поиск

Binary Heap Queue

   

/*
 * Copyright 2005 JBoss Inc
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */
import java.io.Externalizable;
import java.io.IOException;
import java.io.ObjectInput;
import java.io.ObjectOutput;
import java.util.ruparator;
import java.util.NoSuchElementException;
public class BinaryHeapQueue implements Queue, Externalizable {
  /** The default capacity for a binary heap. */
  private final static int DEFAULT_CAPACITY = 13;
  /** The comparator used to order the elements */
  private Comparator comparator;
  /** The number of elements currently in this heap. */
  private int size;
  /** The elements in this heap. */
  private Queueable[] elements;
  public BinaryHeapQueue() {
  }
  /**
   * Constructs a new <code>BinaryHeap</code> that will use the given
   * comparator to order its elements.
   * 
   * @param comparator
   *          the comparator used to order the elements, null means use natural
   *          order
   */
  public BinaryHeapQueue(final Comparator comparator) {
    this(comparator, BinaryHeapQueue.DEFAULT_CAPACITY);
  }
  /**
   * Constructs a new <code>BinaryHeap</code>.
   * 
   * @param comparator
   *          the comparator used to order the elements, null means use natural
   *          order
   * @param capacity
   *          the initial capacity for the heap
   * @throws IllegalArgumentException
   *           if <code>capacity</code> is &lt;= <code>0</code>
   */
  public BinaryHeapQueue(final Comparator comparator, final int capacity) {
    if (capacity <= 0) {
      throw new IllegalArgumentException("invalid capacity");
    }
    // +1 as 0 is noop
    this.elements = new Queueable[capacity + 1];
    this.ruparator = comparator;
  }
  // -----------------------------------------------------------------------
  public void readExternal(ObjectInput in) throws IOException, ClassNotFoundException {
    comparator = (Comparator) in.readObject();
    elements = (Queueable[]) in.readObject();
    size = in.readInt();
  }
  public void writeExternal(ObjectOutput out) throws IOException {
    out.writeObject(comparator);
    out.writeObject(elements);
    out.writeInt(size);
  }
  /**
   * Clears all elements from queue.
   */
  public void clear() {
    this.elements = new Queueable[this.elements.length]; // for gc
    this.size = 0;
  }
  /**
   * Tests if queue is empty.
   * 
   * @return <code>true</code> if queue is empty; <code>false</code>
   *         otherwise.
   */
  public boolean isEmpty() {
    return this.size == 0;
  }
  /**
   * Tests if queue is full.
   * 
   * @return <code>true</code> if queue is full; <code>false</code>
   *         otherwise.
   */
  public boolean isFull() {
    // +1 as Queueable 0 is noop
    return this.elements.length == this.size + 1;
  }
  /**
   * Returns the number of elements in this heap.
   * 
   * @return the number of elements in this heap
   */
  public int size() {
    return this.size;
  }
  /**
   * Inserts an Queueable into queue.
   * 
   * @param element
   *          the Queueable to be inserted
   */
  public synchronized void enqueue(final Queueable element) {
    if (isFull()) {
      grow();
    }
    percolateUpMinHeap(element);
  }
  /**
   * Returns the Queueable on top of heap and remove it.
   * 
   * @return the Queueable at top of heap
   * @throws NoSuchElementException
   *           if <code>isEmpty() == true</code>
   */
  public synchronized Queueable dequeue() throws NoSuchElementException {
    if (isEmpty()) {
      return null;
    }
    final Queueable result = this.elements[1];
    result.dequeue();
    // Code bellow was removed because it is already executed
    // inside result.dequeue()
    //
    // setElement(1, this.elements[this.size--]);
    // this.elements[this.size + 1] = null;
    //
    // if (this.size != 0) {
    // percolateDownMinHeap(1);
    // }
    return result;
  }
  /**
   * 
   * @param index
   */
  public synchronized Queueable dequeue(final int index) {
    if (index < 1 || index > this.size) {
      // throw new NoSuchElementException();
      return null;
    }
    final Queueable result = this.elements[index];
    setElement(index, this.elements[this.size]);
    this.elements[this.size] = null;
    this.size--;
    if (this.size != 0 && index <= this.size) {
      int compareToParent = 0;
      if (index > 1) {
        compareToParent = compare(this.elements[index], this.elements[index / 2]);
      }
      if (index > 1 && compareToParent < 0) {
        percolateUpMinHeap(index);
      } else {
        percolateDownMinHeap(index);
      }
    }
    return result;
  }
  /**
   * Percolates Queueable down heap from the position given by the index. <p/>
   * Assumes it is a minimum heap.
   * 
   * @param index
   *          the index for the Queueable
   */
  private void percolateDownMinHeap(final int index) {
    final Queueable element = this.elements[index];
    int hole = index;
    while ((hole * 2) <= this.size) {
      int child = hole * 2;
      // if we have a right child and that child can not be percolated
      // up then move onto other child
      if (child != this.size && compare(this.elements[child + 1], this.elements[child]) < 0) {
        child++;
      }
      // if we found resting place of bubble then terminate search
      if (compare(this.elements[child], element) >= 0) {
        break;
      }
      setElement(hole, this.elements[child]);
      hole = child;
    }
    setElement(hole, element);
  }
  /**
   * Percolates Queueable up heap from the position given by the index. <p/>
   * Assumes it is a minimum heap.
   * 
   * @param index
   *          the index of the Queueable to be percolated up
   */
  private void percolateUpMinHeap(final int index) {
    int hole = index;
    final Queueable element = this.elements[hole];
    while (hole > 1 && compare(element, this.elements[hole / 2]) < 0) {
      // save Queueable that is being pushed down
      // as the Queueable "bubble" is percolated up
      final int next = hole / 2;
      setElement(hole, this.elements[next]);
      hole = next;
    }
    setElement(hole, element);
  }
  /**
   * Percolates a new Queueable up heap from the bottom. <p/> Assumes it is a
   * minimum heap.
   * 
   * @param element
   *          the Queueable
   */
  private void percolateUpMinHeap(final Queueable element) {
    setElement(++this.size, element);
    percolateUpMinHeap(this.size);
  }
  /**
   * Compares two objects using the comparator if specified, or the natural
   * order otherwise.
   * 
   * @param a
   *          the first object
   * @param b
   *          the second object
   * @return -ve if a less than b, 0 if they are equal, +ve if a greater than b
   */
  private int compare(final Queueable a, final Queueable b) {
    return this.ruparator.rupare(a, b);
  }
  /**
   * Increases the size of the heap to support additional elements
   */
  private void grow() {
    final Queueable[] elements = new Queueable[this.elements.length * 2];
    System.arraycopy(this.elements, 0, elements, 0, this.elements.length);
    this.elements = elements;
  }
  /**
   * 
   * @param index
   * @param element
   */
  private void setElement(final int index, final Queueable element) {
    this.elements[index] = element;
    element.enqueued(this, index);
  }
  public Queueable[] getQueueable() {
    return this.elements;
  }
  public Object[] toArray() {
    final Object[] result = new Object[this.size];
    System.arraycopy(this.elements, 1, result, 0, this.size);
    return result;
  }
  public Object[] toArray(Object a[]) {
    if (a.length < this.size) {
      a = (Object[]) java.lang.reflect.Array
          .newInstance(a.getClass().getComponentType(), this.size);
    }
    System.arraycopy(this.elements, 1, a, 0, this.size);
    if (a.length > this.size) {
      a[this.size] = null;
    }
    return a;
  }
}
/*
 * Copyright 2005 JBoss Inc
 * 
 * Licensed under the Apache License, Version 2.0 (the "License"); you may not
 * use this file except in compliance with the License. You may obtain a copy of
 * the License at
 * 
 * http://www.apache.org/licenses/LICENSE-2.0
 * 
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
 * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
 * License for the specific language governing permissions and limitations under
 * the License.
 */
interface Queue {
  public void enqueue(Queueable queueable);
  public Queueable dequeue();
  public Queueable dequeue(int index);
  public boolean isEmpty();
}
/*
 * Copyright 2005 JBoss Inc
 * 
 * Licensed under the Apache License, Version 2.0 (the "License"); you may not
 * use this file except in compliance with the License. You may obtain a copy of
 * the License at
 * 
 * http://www.apache.org/licenses/LICENSE-2.0
 * 
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
 * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
 * License for the specific language governing permissions and limitations under
 * the License.
 */
interface Queueable {
  public void enqueued(Queue queue, int index);
  public void dequeue();
}





Demonstrates heaps

  
import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;

public class Heap {
  private Node[] heapArray;
  private int maxSize; // size of array
  private int currentSize; // number of nodes in array
  public Heap(int mx) {
    maxSize = mx;
    currentSize = 0;
    heapArray = new Node[maxSize]; // create array
  }
  public boolean isEmpty() {
    return currentSize == 0;
  }
  public boolean insert(int key) {
    if (currentSize == maxSize)
      return false;
    Node newNode = new Node(key);
    heapArray[currentSize] = newNode;
    trickleUp(currentSize++);
    return true;
  } 
  public void trickleUp(int index) {
    int parent = (index - 1) / 2;
    Node bottom = heapArray[index];
    while (index > 0 && heapArray[parent].getKey() < bottom.getKey()) {
      heapArray[index] = heapArray[parent]; // move it down
      index = parent;
      parent = (parent - 1) / 2;
    }
    heapArray[index] = bottom;
  }
  public Node remove() // delete item with max key
  { // (assumes non-empty list)
    Node root = heapArray[0];
    heapArray[0] = heapArray[--currentSize];
    trickleDown(0);
    return root;
  } // end remove()
  public void trickleDown(int index) {
    int largerChild;
    Node top = heapArray[index]; // save root
    while (index < currentSize / 2) // while node has at
    { //    least one child,
      int leftChild = 2 * index + 1;
      int rightChild = leftChild + 1;
      // find larger child
      if (rightChild < currentSize
          && // (rightChild exists?)
          heapArray[leftChild].getKey() < heapArray[rightChild]
              .getKey())
        largerChild = rightChild;
      else
        largerChild = leftChild;
      // top >= largerChild?
      if (top.getKey() >= heapArray[largerChild].getKey())
        break;
      // shift child up
      heapArray[index] = heapArray[largerChild];
      index = largerChild; // go down
    }
    heapArray[index] = top; // root to index
  }
  public boolean change(int index, int newValue) {
    if (index < 0 || index >= currentSize)
      return false;
    int oldValue = heapArray[index].getKey(); // remember old
    heapArray[index].setKey(newValue); // change to new
    if (oldValue < newValue) 
      trickleUp(index); 
    else
      trickleDown(index);
    return true;
  }
  public void displayHeap() {
    System.out.print("heapArray: "); // array format
    for (int m = 0; m < currentSize; m++)
      if (heapArray[m] != null)
        System.out.print(heapArray[m].getKey() + " ");
      else
        System.out.print("-- ");
    int nBlanks = 32;
    int itemsPerRow = 1;
    int column = 0;
    int j = 0; // current item
    while (currentSize > 0) // for each heap item
    {
      if (column == 0) // first item in row?
        for (int k = 0; k < nBlanks; k++)
          // preceding blanks
          System.out.print(" ");
      // display item
      System.out.print(heapArray[j].getKey());
      if (++j == currentSize) // done?
        break;
      if (++column == itemsPerRow) // end of row?
      {
        nBlanks /= 2; // half the blanks
        itemsPerRow *= 2; // twice the items
        column = 0; // start over on
        System.out.println(); //    new row
      } else
        // next item on row
        for (int k = 0; k < nBlanks * 2 - 2; k++)
          System.out.print(" "); // interim blanks
    } 
  }
  public static void main(String[] args) throws IOException {
    int value, value2;
    Heap h = new Heap(31); // make a Heap; max size 31
    boolean success;
    h.insert(70); // insert 10 items
    h.insert(40);
    h.insert(50);
    h.insert(20);
    h.insert(60);
    h.insert(100);
    h.insert(80);
    h.insert(30);
    h.insert(10);
    h.insert(90);
    h.displayHeap();
    value = 100;
    success = h.insert(value);
    if (!success)
      System.out.println("Can"t insert; heap full");
    if (!h.isEmpty())
      h.remove();
    else
      System.out.println("Can"t remove; heap empty");
    value = 80;
    value2 = 999;
    success = h.change(value, value2);
    if (!success)
      System.out.println("Invalid index");
  }
  class Node {
    private int data; 
    public Node(int key) {
      data = key;
    }
    public int getKey() {
      return data;
    }
    public void setKey(int id) {
      data = id;
    }
  }
}





Fibonacci heap data structure

   
/* 
 * JGraphT : a free Java graph-theory library
 * 
 *
 * Project Info:  http://jgrapht.sourceforge.net/
 * Project Creator:  Barak Naveh (barak_naveh@users.sourceforge.net)
 *
 * (C) Copyright 2003-2007, by Barak Naveh and Contributors.
 *
 * This library is free software; you can redistribute it and/or modify it
 * under the terms of the GNU Lesser General Public License as published by
 * the Free Software Foundation; either version 2.1 of the License, or
 * (at your option) any later version.
 *
 * This library is distributed in the hope that it will be useful, but
 * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
 * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public
 * License for more details.
 *
 * You should have received a copy of the GNU Lesser General Public License
 * along with this library; if not, write to the Free Software Foundation,
 * Inc.,
 * 59 Temple Place, Suite 330, Boston, MA 02111-1307, USA.
 */
/* --------------------------
 * FibonnaciHeap.java
 * --------------------------
 * (C) Copyright 1999-2003, by Nathan Fiedler and Contributors.
 *
 * Original Author:  Nathan Fiedler
 * Contributor(s):   John V. Sichi
 *
 * $Id: FibonacciHeap.java 603 2008-06-28 07:51:50Z perfecthash $
 *
 * Changes
 * -------
 * 03-Sept-2003 : Adapted from Nathan Fiedler (JVS);
 *
 *      Name    Date            Description
 *      ----    ----            -----------
 *      nf      08/31/97        Initial version
 *      nf      09/07/97        Removed FibHeapData interface
 *      nf      01/20/01        Added synchronization
 *      nf      01/21/01        Made Node an inner class
 *      nf      01/05/02        Added clear(), renamed empty() to
 *                              isEmpty(), and renamed printHeap()
 *                              to toString()
 *      nf      01/06/02        Removed all synchronization
 *
 */
import java.util.*;

/**
 * This class implements a Fibonacci heap data structure. Much of the code in
 * this class is based on the algorithms in the "Introduction to Algorithms"by
 * Cormen, Leiserson, and Rivest in Chapter 21. The amortized running time of
 * most of these methods is O(1), making it a very fast data structure. Several
 * have an actual running time of O(1). removeMin() and delete() have O(log n)
 * amortized running times because they do the heap consolidation. If you
 * attempt to store nodes in this heap with key values of -Infinity
 * (Double.NEGATIVE_INFINITY) the <code>delete()</code> operation may fail to
 * remove the correct element.
 *
 * <p><b>Note that this implementation is not synchronized.</b> If multiple
 * threads access a set concurrently, and at least one of the threads modifies
 * the set, it <i>must</i> be synchronized externally. This is typically
 * accomplished by synchronizing on some object that naturally encapsulates the
 * set.</p>
 *
 * <p>This class was originally developed by Nathan Fiedler for the GraphMaker
 * project. It was imported to JGraphT with permission, courtesy of Nathan
 * Fiedler.</p>
 *
 * @author Nathan Fiedler
 */
public class FibonacciHeap<T>
{
    //~ Static fields/initializers ---------------------------------------------
    private static final double oneOverLogPhi =
        1.0 / Math.log((1.0 + Math.sqrt(5.0)) / 2.0);
    //~ Instance fields --------------------------------------------------------
    /**
     * Points to the minimum node in the heap.
     */
    private FibonacciHeapNode<T> minNode;
    /**
     * Number of nodes in the heap.
     */
    private int nNodes;
    //~ Constructors -----------------------------------------------------------
    /**
     * Constructs a FibonacciHeap object that contains no elements.
     */
    public FibonacciHeap()
    {
    } // FibonacciHeap
    //~ Methods ----------------------------------------------------------------
    /**
     * Tests if the Fibonacci heap is empty or not. Returns true if the heap is
     * empty, false otherwise.
     *
     * <p>Running time: O(1) actual</p>
     *
     * @return true if the heap is empty, false otherwise
     */
    public boolean isEmpty()
    {
        return minNode == null;
    }
    // isEmpty
    /**
     * Removes all elements from this heap.
     */
    public void clear()
    {
        minNode = null;
        nNodes = 0;
    }
    // clear
    /**
     * Decreases the key value for a heap node, given the new value to take on.
     * The structure of the heap may be changed and will not be consolidated.
     *
     * <p>Running time: O(1) amortized</p>
     *
     * @param x node to decrease the key of
     * @param k new key value for node x
     *
     * @exception IllegalArgumentException Thrown if k is larger than x.key
     * value.
     */
    public void decreaseKey(FibonacciHeapNode<T> x, double k)
    {
        if (k > x.key) {
            throw new IllegalArgumentException(
                "decreaseKey() got larger key value");
        }
        x.key = k;
        FibonacciHeapNode<T> y = x.parent;
        if ((y != null) && (x.key < y.key)) {
            cut(x, y);
            cascadingCut(y);
        }
        if (x.key < minNode.key) {
            minNode = x;
        }
    }
    // decreaseKey
    /**
     * Deletes a node from the heap given the reference to the node. The trees
     * in the heap will be consolidated, if necessary. This operation may fail
     * to remove the correct element if there are nodes with key value
     * -Infinity.
     *
     * <p>Running time: O(log n) amortized</p>
     *
     * @param x node to remove from heap
     */
    public void delete(FibonacciHeapNode<T> x)
    {
        // make x as small as possible
        decreaseKey(x, Double.NEGATIVE_INFINITY);
        // remove the smallest, which decreases n also
        removeMin();
    }
    // delete
    /**
     * Inserts a new data element into the heap. No heap consolidation is
     * performed at this time, the new node is simply inserted into the root
     * list of this heap.
     *
     * <p>Running time: O(1) actual</p>
     *
     * @param node new node to insert into heap
     * @param key key value associated with data object
     */
    public void insert(FibonacciHeapNode<T> node, double key)
    {
        node.key = key;
        // concatenate node into min list
        if (minNode != null) {
            node.left = minNode;
            node.right = minNode.right;
            minNode.right = node;
            node.right.left = node;
            if (key < minNode.key) {
                minNode = node;
            }
        } else {
            minNode = node;
        }
        nNodes++;
    }
    // insert
    /**
     * Returns the smallest element in the heap. This smallest element is the
     * one with the minimum key value.
     *
     * <p>Running time: O(1) actual</p>
     *
     * @return heap node with the smallest key
     */
    public FibonacciHeapNode<T> min()
    {
        return minNode;
    }
    // min
    /**
     * Removes the smallest element from the heap. This will cause the trees in
     * the heap to be consolidated, if necessary.
     *
     * <p>Running time: O(log n) amortized</p>
     *
     * @return node with the smallest key
     */
    public FibonacciHeapNode<T> removeMin()
    {
        FibonacciHeapNode<T> z = minNode;
        if (z != null) {
            int numKids = z.degree;
            FibonacciHeapNode<T> x = z.child;
            FibonacciHeapNode<T> tempRight;
            // for each child of z do...
            while (numKids > 0) {
                tempRight = x.right;
                // remove x from child list
                x.left.right = x.right;
                x.right.left = x.left;
                // add x to root list of heap
                x.left = minNode;
                x.right = minNode.right;
                minNode.right = x;
                x.right.left = x;
                // set parent[x] to null
                x.parent = null;
                x = tempRight;
                numKids--;
            }
            // remove z from root list of heap
            z.left.right = z.right;
            z.right.left = z.left;
            if (z == z.right) {
                minNode = null;
            } else {
                minNode = z.right;
                consolidate();
            }
            // decrement size of heap
            nNodes--;
        }
        return z;
    }
    // removeMin
    /**
     * Returns the size of the heap which is measured in the number of elements
     * contained in the heap.
     *
     * <p>Running time: O(1) actual</p>
     *
     * @return number of elements in the heap
     */
    public int size()
    {
        return nNodes;
    }
    // size
    /**
     * Joins two Fibonacci heaps into a new one. No heap consolidation is
     * performed at this time. The two root lists are simply joined together.
     *
     * <p>Running time: O(1) actual</p>
     *
     * @param h1 first heap
     * @param h2 second heap
     *
     * @return new heap containing h1 and h2
     */
    public static <T> FibonacciHeap<T> union(
        FibonacciHeap<T> h1,
        FibonacciHeap<T> h2)
    {
        FibonacciHeap<T> h = new FibonacciHeap<T>();
        if ((h1 != null) && (h2 != null)) {
            h.minNode = h1.minNode;
            if (h.minNode != null) {
                if (h2.minNode != null) {
                    h.minNode.right.left = h2.minNode.left;
                    h2.minNode.left.right = h.minNode.right;
                    h.minNode.right = h2.minNode;
                    h2.minNode.left = h.minNode;
                    if (h2.minNode.key < h1.minNode.key) {
                        h.minNode = h2.minNode;
                    }
                }
            } else {
                h.minNode = h2.minNode;
            }
            h.nNodes = h1.nNodes + h2.nNodes;
        }
        return h;
    }
    // union
    /**
     * Creates a String representation of this Fibonacci heap.
     *
     * @return String of this.
     */
    public String toString()
    {
        if (minNode == null) {
            return "FibonacciHeap=[]";
        }
        // create a new stack and put root on it
        Stack<FibonacciHeapNode<T>> stack = new Stack<FibonacciHeapNode<T>>();
        stack.push(minNode);
        StringBuffer buf = new StringBuffer(512);
        buf.append("FibonacciHeap=[");
        // do a simple breadth-first traversal on the tree
        while (!stack.empty()) {
            FibonacciHeapNode<T> curr = stack.pop();
            buf.append(curr);
            buf.append(", ");
            if (curr.child != null) {
                stack.push(curr.child);
            }
            FibonacciHeapNode<T> start = curr;
            curr = curr.right;
            while (curr != start) {
                buf.append(curr);
                buf.append(", ");
                if (curr.child != null) {
                    stack.push(curr.child);
                }
                curr = curr.right;
            }
        }
        buf.append("]");
        return buf.toString();
    }
    // toString
    /**
     * Performs a cascading cut operation. This cuts y from its parent and then
     * does the same for its parent, and so on up the tree.
     *
     * <p>Running time: O(log n); O(1) excluding the recursion</p>
     *
     * @param y node to perform cascading cut on
     */
    protected void cascadingCut(FibonacciHeapNode<T> y)
    {
        FibonacciHeapNode<T> z = y.parent;
        // if there"s a parent...
        if (z != null) {
            // if y is unmarked, set it marked
            if (!y.mark) {
                y.mark = true;
            } else {
                // it"s marked, cut it from parent
                cut(y, z);
                // cut its parent as well
                cascadingCut(z);
            }
        }
    }
    // cascadingCut
    protected void consolidate()
    {
        int arraySize =
            ((int) Math.floor(Math.log(nNodes) * oneOverLogPhi)) + 1;
        List<FibonacciHeapNode<T>> array =
            new ArrayList<FibonacciHeapNode<T>>(arraySize);
        // Initialize degree array
        for (int i = 0; i < arraySize; i++) {
            array.add(null);
        }
        // Find the number of root nodes.
        int numRoots = 0;
        FibonacciHeapNode<T> x = minNode;
        if (x != null) {
            numRoots++;
            x = x.right;
            while (x != minNode) {
                numRoots++;
                x = x.right;
            }
        }
        // For each node in root list do...
        while (numRoots > 0) {
            // Access this node"s degree..
            int d = x.degree;
            FibonacciHeapNode<T> next = x.right;
            // ..and see if there"s another of the same degree.
            for (;;) {
                FibonacciHeapNode<T> y = array.get(d);
                if (y == null) {
                    // Nope.
                    break;
                }
                // There is, make one of the nodes a child of the other.
                // Do this based on the key value.
                if (x.key > y.key) {
                    FibonacciHeapNode<T> temp = y;
                    y = x;
                    x = temp;
                }
                // FibonacciHeapNode<T> y disappears from root list.
                link(y, x);
                // We"ve handled this degree, go to next one.
                array.set(d, null);
                d++;
            }
            // Save this node for later when we might encounter another
            // of the same degree.
            array.set(d, x);
            // Move forward through list.
            x = next;
            numRoots--;
        }
        // Set min to null (effectively losing the root list) and
        // reconstruct the root list from the array entries in array[].
        minNode = null;
        for (int i = 0; i < arraySize; i++) {
            FibonacciHeapNode<T> y = array.get(i);
            if (y == null) {
                continue;
            }
            // We"ve got a live one, add it to root list.
            if (minNode != null) {
                // First remove node from root list.
                y.left.right = y.right;
                y.right.left = y.left;
                // Now add to root list, again.
                y.left = minNode;
                y.right = minNode.right;
                minNode.right = y;
                y.right.left = y;
                // Check if this is a new min.
                if (y.key < minNode.key) {
                    minNode = y;
                }
            } else {
                minNode = y;
            }
        }
    }
    // consolidate
    /**
     * The reverse of the link operation: removes x from the child list of y.
     * This method assumes that min is non-null.
     *
     * <p>Running time: O(1)</p>
     *
     * @param x child of y to be removed from y"s child list
     * @param y parent of x about to lose a child
     */
    protected void cut(FibonacciHeapNode<T> x, FibonacciHeapNode<T> y)
    {
        // remove x from childlist of y and decrement degree[y]
        x.left.right = x.right;
        x.right.left = x.left;
        y.degree--;
        // reset y.child if necessary
        if (y.child == x) {
            y.child = x.right;
        }
        if (y.degree == 0) {
            y.child = null;
        }
        // add x to root list of heap
        x.left = minNode;
        x.right = minNode.right;
        minNode.right = x;
        x.right.left = x;
        // set parent[x] to nil
        x.parent = null;
        // set mark[x] to false
        x.mark = false;
    }
    // cut
    /**
     * Make node y a child of node x.
     *
     * <p>Running time: O(1) actual</p>
     *
     * @param y node to become child
     * @param x node to become parent
     */
    protected void link(FibonacciHeapNode<T> y, FibonacciHeapNode<T> x)
    {
        // remove y from root list of heap
        y.left.right = y.right;
        y.right.left = y.left;
        // make y a child of x
        y.parent = x;
        if (x.child == null) {
            x.child = y;
            y.right = y;
            y.left = y;
        } else {
            y.left = x.child;
            y.right = x.child.right;
            x.child.right = y;
            y.right.left = y;
        }
        // increase degree[x]
        x.degree++;
        // set mark[y] false
        y.mark = false;
    }
    // link
}
// FibonacciHeap
/* 
 * JGraphT : a free Java graph-theory library
 * 
 *
 * Project Info:  http://jgrapht.sourceforge.net/
 * Project Creator:  Barak Naveh (barak_naveh@users.sourceforge.net)
 *
 * (C) Copyright 2003-2007, by Barak Naveh and Contributors.
 *
 * This library is free software; you can redistribute it and/or modify it
 * under the terms of the GNU Lesser General Public License as published by
 * the Free Software Foundation; either version 2.1 of the License, or
 * (at your option) any later version.
 *
 * This library is distributed in the hope that it will be useful, but
 * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
 * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public
 * License for more details.
 *
 * You should have received a copy of the GNU Lesser General Public License
 * along with this library; if not, write to the Free Software Foundation,
 * Inc.,
 * 59 Temple Place, Suite 330, Boston, MA 02111-1307, USA.
 */
/* --------------------------
 * FibonnaciHeapNode.java
 * --------------------------
 * (C) Copyright 1999-2007, by Nathan Fiedler and Contributors.
 *
 * Original Author:  Nathan Fiedler
 * Contributor(s):   John V. Sichi
 *
 * $Id: FibonacciHeapNode.java 568 2007-09-30 00:12:18Z perfecthash $
 *
 * Changes
 * -------
 * 03-Sept-2003 : Adapted from Nathan Fiedler (JVS);
 *
 *      Name    Date            Description
 *      ----    ----            -----------
 *      nf      08/31/97        Initial version
 *      nf      09/07/97        Removed FibHeapData interface
 *      nf      01/20/01        Added synchronization
 *      nf      01/21/01        Made Node an inner class
 *      nf      01/05/02        Added clear(), renamed empty() to
 *                              isEmpty(), and renamed printHeap()
 *                              to toString()
 *      nf      01/06/02        Removed all synchronization
 *      JVS     06/24/06        Generics
 *
 */
/**
 * Implements a node of the Fibonacci heap. It holds the information necessary
 * for maintaining the structure of the heap. It also holds the reference to the
 * key value (which is used to determine the heap structure).
 *
 * @author Nathan Fiedler
 */
class FibonacciHeapNode<T>
{
    //~ Instance fields --------------------------------------------------------
    /**
     * Node data.
     */
    T data;
    /**
     * first child node
     */
    FibonacciHeapNode<T> child;
    /**
     * left sibling node
     */
    FibonacciHeapNode<T> left;
    /**
     * parent node
     */
    FibonacciHeapNode<T> parent;
    /**
     * right sibling node
     */
    FibonacciHeapNode<T> right;
    /**
     * true if this node has had a child removed since this node was added to
     * its parent
     */
    boolean mark;
    /**
     * key value for this node
     */
    double key;
    /**
     * number of children of this node (does not count grandchildren)
     */
    int degree;
    //~ Constructors -----------------------------------------------------------
    /**
     * Default constructor. Initializes the right and left pointers, making this
     * a circular doubly-linked list.
     *
     * @param data data for this node
     * @param key initial key for node
     */
    public FibonacciHeapNode(T data, double key)
    {
        right = this;
        left = this;
        this.data = data;
        this.key = key;
    }
    //~ Methods ----------------------------------------------------------------
    /**
     * Obtain the key for this node.
     *
     * @return the key
     */
    public final double getKey()
    {
        return key;
    }
    /**
     * Obtain the data for this node.
     */
    public final T getData()
    {
        return data;
    }
    /**
     * Return the string representation of this object.
     *
     * @return string representing this object
     */
    public String toString()
    {
        if (true) {
            return Double.toString(key);
        } else {
            StringBuffer buf = new StringBuffer();
            buf.append("Node=[parent = ");
            if (parent != null) {
                buf.append(Double.toString(parent.key));
            } else {
                buf.append("---");
            }
            buf.append(", key = ");
            buf.append(Double.toString(key));
            buf.append(", degree = ");
            buf.append(Integer.toString(degree));
            buf.append(", right = ");
            if (right != null) {
                buf.append(Double.toString(right.key));
            } else {
                buf.append("---");
            }
            buf.append(", left = ");
            if (left != null) {
                buf.append(Double.toString(left.key));
            } else {
                buf.append("---");
            }
            buf.append(", child = ");
            if (child != null) {
                buf.append(Double.toString(child.key));
            } else {
                buf.append("---");
            }
            buf.append("]");
            return buf.toString();
        }
    }
    // toString
}
// End FibonacciHeapNode.java