Java/Collections Data Structure/ArrayList

Материал из Java эксперт
Перейти к: навигация, поиск

Содержание

A boolean is being stored and then retrieved from an ArrayList

   <source lang="java">
  

import java.util.ArrayList; public class Main {

 public static void main(String... args) {
   ArrayList<Boolean> list = new ArrayList<Boolean>();
   list.add(true);
   boolean flag = list.get(0);
 }

}


 </source>
   
  
 
  



Add an element to specified index of Java ArrayList

   <source lang="java">
  

import java.util.ArrayList; public class Main {

 public static void main(String[] args) {
   ArrayList<String> arrayList = new ArrayList<String>();
   arrayList.add("1");
   arrayList.add("2");
   arrayList.add("3");
   arrayList.add(1, "INSERTED");
   for (String str: arrayList)
     System.out.println(str);
 }

} /* 1 INSERTED 2 3

  • /


 </source>
   
  
 
  



Append all elements of other Collection to Java ArrayList

   <source lang="java">
  

import java.util.ArrayList; import java.util.Vector; public class Main {

 public static void main(String[] args) {
   ArrayList<String> arrayList = new ArrayList<String>();
   arrayList.add("1");
   arrayList.add("2");
   arrayList.add("3");
   Vector<String> v = new Vector<String>();
   v.add("4");
   v.add("5");
   // append all elements of Vector to ArrayList
   arrayList.addAll(v);
   for (String str : arrayList)
     System.out.println(str);
 }

} /* 1 2 3 4 5

  • /


 </source>
   
  
 
  



A variant of java.util.ArrayList in which all mutative operations (add, set, and so on) are implemented by making a fresh copy of the underlying array

   <source lang="java">
  

/*

* File: CopyOnWriteArrayList.java
* 
* Written by Doug Lea. Adapted and released, under explicit permission, from
* JDK1.2 ArrayList.java which carries the following copyright:
* 
* Copyright 1997 by Sun Microsystems, Inc., 901 San Antonio Road, Palo Alto,
* California, 94303, U.S.A. All rights reserved.
* 
* This software is the confidential and proprietary information of Sun
* Microsystems, Inc. ("Confidential Information"). You shall not disclose such
* Confidential Information and shall use it only in accordance with the terms
* of the license agreement you entered into with Sun.
* 
* History: Date Who What 21Jun1998 dl Create public version 9Oct1999 dl faster
* equals 29jun2001 dl Serialization methods now private
*/

import java.util.*; /**

* This class implements a variant of java.util.ArrayList in which all mutative
* operations (add, set, and so on) are implemented by making a fresh copy of
* the underlying array.
*

* This is ordinarily too costly, but it becomes attractive when traversal * operations vastly overwhelm mutations, and, especially, when you cannot or * don"t want to synchronize traversals, yet need to preclude interference among * concurrent threads. The iterator method uses a reference to the state of the * array at the point that the iterator was created. This array never changes * during the lifetime of the iterator, so interference is impossible. (The * iterator will not traverse elements added or changed since the iterator was * created, but usually this is a desirable feature.) * <p> * As much code and documentation as possible was shamelessly copied from * java.util.ArrayList (Thanks, Josh!), with the intent of preserving all * semantics of ArrayList except for the copy-on-write property. (The java.util * collection code could not be subclassed here since all of the existing * collection classes assume elementwise mutability.) * <p> * Because of the copy-on-write policy, some one-by-one mutative operations in * the java.util.Arrays and java.util.Collections classes are so time/space * intensive as to never be worth calling (except perhaps as benchmarks for * garbage collectors :-). * <p> * Three methods are supported in addition to those described in List and * ArrayList. The addIfAbsent and addAllAbsent methods provide Set semantics for * add, and are used in CopyOnWriteArraySet. However, they can also be used * directly from this List version. The copyIn method (and a constructor that * invokes it) allow you to copy in an initial array to use. This method can be * useful when you first want to perform many operations on a plain array, and * then make a copy available for use through the collection API. * <p> * Due to their strict read-only nature, element-changing operations on * iterators (remove, set, and add) are not supported. These are the only * methods throwing UnsupportedOperationException. * <p> * <p>[] * * @see CopyOnWriteArraySet */ public class CopyOnWriteArrayList implements List, Cloneable, java.io.Serializable { private static final long serialVersionUID = 1L; /** * The held array. Directly access only within synchronized methods */ protected transient Object[] array_; /** * Accessor to the array intended to be called from within unsynchronized * read-only methods * * @return The internal array */ protected synchronized Object[] array() { return array_; } /** * Constructs an empty list * */ public CopyOnWriteArrayList() { array_ = new Object[0]; } /** * Constructs an list containing the elements of the specified Collection, * in the order they are returned by the Collection"s iterator. * * @param c The collection to get the objects from. */ public CopyOnWriteArrayList(Collection c) { array_ = new Object[c.size()]; Iterator i = c.iterator(); int size = 0; while (i.hasNext()) array_[size++] = i.next(); } /** * Create a new CopyOnWriteArrayList holding a copy of given array * * @param toCopyIn * the array. A copy of this array is used as the internal array. */ public CopyOnWriteArrayList(Object[] toCopyIn) { copyIn(toCopyIn, 0, toCopyIn.length); } /** * Replace the held array with a copy of the n elements of * the provided array, starting at position first. To copy * an entire array, call with arguments (array, 0, array.length). * * @param toCopyIn * the array. A copy of the indicated elements of this array is * used as the internal array. * @param first * The index of first position of the array to start copying * from. * @param n * the number of elements to copy. This will be the new size of * the list. */ public synchronized void copyIn(Object[] toCopyIn, int first, int n) { array_ = new Object[n]; System.arraycopy(toCopyIn, first, array_, 0, n); } /** * Returns the number of components in this list. * * @return the number of components in this list. */ public int size() { return array().length; } /** * Tests if this list has no components. * * @return true if this list has no components; * false otherwise. */ public boolean isEmpty() { return size() == 0; } /** * Returns true if this list contains the specified element. * * @param o * element whose presence in this List is to be tested. */ public boolean contains(Object elem) { Object[] elementData = array(); int len = elementData.length; return indexOf(elem, elementData, len) >= 0; } /** * Searches for the first occurence of the given argument, testing for * equality using the equals method. * * @param elem * an object. * @return the index of the first occurrence of the argument in this list; * returns -1 if the object is not found. * @see Object#equals(Object) */ public int indexOf(Object elem) { Object[] elementData = array(); int len = elementData.length; return indexOf(elem, elementData, len); } /** * static version allows repeated call without needed to grab lock for array * each time * @param elem * @param elementData * @param len * @return The index that is found. -1 if not found */ protected static int indexOf(Object elem, Object[] elementData, int len) { if (elem == null) { for (int i = 0; i < len; i++) if (elementData[i] == null) return i; } else { for (int i = 0; i < len; i++) if (elem.equals(elementData[i])) return i; } return -1; } /** * Searches for the first occurence of the given argument, beginning the * search at index, and testing for equality using the * equals method. * * @param elem * an object. * @param index * the index to start searching from. * @return the index of the first occurrence of the object argument in this * List at position index or later in the List; * returns -1 if the object is not found. * @see Object#equals(Object) */ // needed in order to compile on 1.2b3 public int indexOf(Object elem, int index) { Object[] elementData = array(); int elementCount = elementData.length; if (elem == null) { for (int i = index; i < elementCount; i++) if (elementData[i] == null) return i; } else { for (int i = index; i < elementCount; i++) if (elem.equals(elementData[i])) return i; } return -1; } /** * Returns the index of the last occurrence of the specified object in this * list. * * @param elem * the desired component. * @return the index of the last occurrence of the specified object in this * list; returns -1 if the object is not found. */ public int lastIndexOf(Object elem) { Object[] elementData = array(); int len = elementData.length; return lastIndexOf(elem, elementData, len); } protected static int lastIndexOf(Object elem, Object[] elementData, int len) { if (elem == null) { for (int i = len - 1; i >= 0; i--) if (elementData[i] == null) return i; } else { for (int i = len - 1; i >= 0; i--) if (elem.equals(elementData[i])) return i; } return -1; } /** * Searches backwards for the specified object, starting from the specified * index, and returns an index to it. * * @param elem * the desired component. * @param index * the index to start searching from. * @return the index of the last occurrence of the specified object in this * List at position less than index in the List; -1 if the object is * not found. */ public int lastIndexOf(Object elem, int index) { // needed in order to compile on 1.2b3 Object[] elementData = array(); if (elem == null) { for (int i = index; i >= 0; i--) if (elementData[i] == null) return i; } else { for (int i = index; i >= 0; i--) if (elem.equals(elementData[i])) return i; } return -1; } /** * Returns a shallow copy of this list. (The elements themselves are not * copied.) * * @return a clone of this list. */ public Object clone() { try { Object[] elementData = array(); CopyOnWriteArrayList v = (CopyOnWriteArrayList)super.clone(); v.array_ = new Object[elementData.length]; System.arraycopy(elementData, 0, v.array_, 0, elementData.length); return v; } catch (CloneNotSupportedException e) { // this shouldn"t happen, since we are Cloneable throw new InternalError(); } } /** * Returns an array containing all of the elements in this list in the * correct order. */ public Object[] toArray() { Object[] elementData = array(); Object[] result = new Object[elementData.length]; System.arraycopy(elementData, 0, result, 0, elementData.length); return result; } /** * Returns an array containing all of the elements in this list in the * correct order. The runtime type of the returned array is that of the * specified array. If the list fits in the specified array, it is returned * therein. Otherwise, a new array is allocated with the runtime type of the * specified array and the size of this list. * <p> * If the list fits in the specified array with room to spare (i.e., the * array has more elements than the list), the element in the array * immediately following the end of the collection is set to null. This is * useful in determining the length of the list only if the * caller knows that the list does not contain any null elements. * * @param a * the array into which the elements of the list are to be * stored, if it is big enough; otherwise, a new array of the * same runtime type is allocated for this purpose. * @return an array containing the elements of the list. * @exception ArrayStoreException * the runtime type of a is not a supertype of the runtime * type of every element in this list. */ public Object[] toArray(Object a[]) { Object[] elementData = array(); if (a.length < elementData.length) a = (Object[])java.lang.reflect.Array.newInstance(a.getClass().getComponentType(), elementData.length); System.arraycopy(elementData, 0, a, 0, elementData.length); if (a.length > elementData.length) a[elementData.length] = null; return a; } // Positional Access Operations /** * Returns the element at the specified position in this list. * * @param index * index of element to return. * @exception IndexOutOfBoundsException * index is out of range (index < 0 || index >= * size()). */ public Object get(int index) { Object[] elementData = array(); rangeCheck(index, elementData.length); return elementData[index]; } /** * Replaces the element at the specified position in this list with the * specified element. * * @param index * index of element to replace. * @param element * element to be stored at the specified position. * @return the element previously at the specified position. * @exception IndexOutOfBoundsException * index out of range (index < 0 || index >= size()). */ public synchronized Object set(int index, Object element) { int len = array_.length; rangeCheck(index, len); Object oldValue = array_[index]; boolean same = (oldValue == element || (element != null && element.equals(oldValue))); if (!same) { Object[] newArray = new Object[len]; System.arraycopy(array_, 0, newArray, 0, len); newArray[index] = element; array_ = newArray; } return oldValue; } /** * Appends the specified element to the end of this list. * * @param element * element to be appended to this list. * @return true (as per the general contract of Collection.add). */ public synchronized boolean add(Object element) { int len = array_.length; Object[] newArray = new Object[len + 1]; System.arraycopy(array_, 0, newArray, 0, len); newArray[len] = element; array_ = newArray; return true; } /** * Inserts the specified element at the specified position in this list. * Shifts the element currently at that position (if any) and any subsequent * elements to the right (adds one to their indices). * * @param index * index at which the specified element is to be inserted. * @param element * element to be inserted. * @exception IndexOutOfBoundsException * index is out of range (index < 0 || index > size()). */ public synchronized void add(int index, Object element) { int len = array_.length; if (index > len || index < 0) throw new IndexOutOfBoundsException("Index: " + index + ", Size: " + len); Object[] newArray = new Object[len + 1]; System.arraycopy(array_, 0, newArray, 0, index); newArray[index] = element; System.arraycopy(array_, index, newArray, index + 1, len - index); array_ = newArray; } /** * Removes the element at the specified position in this list. Shifts any * subsequent elements to the left (subtracts one from their indices). * Returns the element that was removed from the list. * * @param index * the index of the element to removed. * @exception IndexOutOfBoundsException * index out of range (index < 0 || index >= size()). */ public synchronized Object remove(int index) { int len = array_.length; rangeCheck(index, len); Object oldValue = array_[index]; Object[] newArray = new Object[len - 1]; System.arraycopy(array_, 0, newArray, 0, index); int numMoved = len - index - 1; if (numMoved > 0) System.arraycopy(array_, index + 1, newArray, index, numMoved); array_ = newArray; return oldValue; } /** * Removes a single instance of the specified element from this Collection, * if it is present (optional operation). More formally, removes an element * e such that (o==null ? e==null : * o.equals(e)), * if the Collection contains one or more such elements. Returns true if the * Collection contained the specified element (or equivalently, if the * Collection changed as a result of the call). * * @param element * element to be removed from this Collection, if present. * @return true if the Collection changed as a result of the call. */ public synchronized boolean remove(Object element) { int len = array_.length; if (len == 0) return false; // Copy while searching for element to remove // This wins in the normal case of element being present int newlen = len - 1; Object[] newArray = new Object[newlen]; for (int i = 0; i < newlen; ++i) { if (element == array_[i] || (element != null && element.equals(array_[i]))) { // found one; copy remaining and exit for (int k = i + 1; k < len; ++k) newArray[k - 1] = array_[k]; array_ = newArray; return true; } else newArray[i] = array_[i]; } // special handling for last cell if (element == array_[newlen] || (element != null && element.equals(array_[newlen]))) { array_ = newArray; return true; } else return false; // throw away copy } /** * Removes from this List all of the elements whose index is between * fromIndex, inclusive and toIndex, exclusive. Shifts any succeeding * elements to the left (reduces their index). This call shortens the List * by (toIndex - fromIndex) elements. (If toIndex==fromIndex, this operation * has no effect.) * * @param fromIndex * index of first element to be removed. * @param toIndex * index after last element to be removed. * @exception IndexOutOfBoundsException * fromIndex or toIndex out of range (fromIndex < 0 || * fromIndex >= size() || toIndex > size() || toIndex * < fromIndex). */ public synchronized void removeRange(int fromIndex, int toIndex) { int len = array_.length; if (fromIndex < 0 || fromIndex >= len || toIndex > len || toIndex < fromIndex) throw new IndexOutOfBoundsException(); int numMoved = len - toIndex; int newlen = len - (toIndex - fromIndex); Object[] newArray = new Object[newlen]; System.arraycopy(array_, 0, newArray, 0, fromIndex); System.arraycopy(array_, toIndex, newArray, fromIndex, numMoved); array_ = newArray; } /** * Append the element if not present. This operation can be used to obtain * Set semantics for lists. * * @param element * element to be added to this Collection, if absent. * @return true if added */ public synchronized boolean addIfAbsent(Object element) { // Copy while checking if already present. // This wins in the most common case where it is not present int len = array_.length; Object[] newArray = new Object[len + 1]; for (int i = 0; i < len; ++i) { if (element == array_[i] || (element != null && element.equals(array_[i]))) return false; // exit, throwing away copy else newArray[i] = array_[i]; } newArray[len] = element; array_ = newArray; return true; } /** * Returns true if this Collection contains all of the elements in the * specified Collection. * <p> * This implementation iterates over the specified Collection, checking each * element returned by the Iterator in turn to see if it"s contained in this * Collection. If all elements are so contained true is returned, otherwise * false. * */ public boolean containsAll(Collection c) { Object[] elementData = array(); int len = elementData.length; Iterator e = c.iterator(); while (e.hasNext()) if (indexOf(e.next(), elementData, len) < 0) return false; return true; } /** * Removes from this Collection all of its elements that are contained in * the specified Collection. This is a particularly expensive operation in * this class because of the need for an internal temporary array. * <p> * * @return true if this Collection changed as a result of the call. */ public synchronized boolean removeAll(Collection c) { Object[] elementData = array_; int len = elementData.length; if (len == 0) return false; // temp array holds those elements we know we want to keep Object[] temp = new Object[len]; int newlen = 0; for (int i = 0; i < len; ++i) { Object element = elementData[i]; if (!c.contains(element)) { temp[newlen++] = element; } } if (newlen == len) return false; // copy temp as new array Object[] newArray = new Object[newlen]; System.arraycopy(temp, 0, newArray, 0, newlen); array_ = newArray; return true; } /** * Retains only the elements in this Collection that are contained in the * specified Collection (optional operation). In other words, removes from * this Collection all of its elements that are not contained in the * specified Collection. * * @return true if this Collection changed as a result of the call. */ public synchronized boolean retainAll(Collection c) { Object[] elementData = array_; int len = elementData.length; if (len == 0) return false; Object[] temp = new Object[len]; int newlen = 0; for (int i = 0; i < len; ++i) { Object element = elementData[i]; if (c.contains(element)) { temp[newlen++] = element; } } if (newlen == len) return false; Object[] newArray = new Object[newlen]; System.arraycopy(temp, 0, newArray, 0, newlen); array_ = newArray; return true; } /** * Appends all of the elements in the specified Collection that are not * already contained in this list, to the end of this list, in the order * that they are returned by the specified Collection"s Iterator. * * @param c * elements to be added into this list. * @return the number of elements added */ public synchronized int addAllAbsent(Collection c) { int numNew = c.size(); if (numNew == 0) return 0; Object[] elementData = array_; int len = elementData.length; Object[] temp = new Object[numNew]; int added = 0; Iterator e = c.iterator(); while (e.hasNext()) { Object element = e.next(); if (indexOf(element, elementData, len) < 0) { if (indexOf(element, temp, added) < 0) { temp[added++] = element; } } } if (added == 0) return 0; Object[] newArray = new Object[len + added]; System.arraycopy(elementData, 0, newArray, 0, len); System.arraycopy(temp, 0, newArray, len, added); array_ = newArray; return added; } /** * Removes all of the elements from this list. * */ public synchronized void clear() { array_ = new Object[0]; } /** * Appends all of the elements in the specified Collection to the end of * this list, in the order that they are returned by the specified * Collection"s Iterator. * * @param c * elements to be inserted into this list. */ public synchronized boolean addAll(Collection c) { int numNew = c.size(); if (numNew == 0) return false; int len = array_.length; Object[] newArray = new Object[len + numNew]; System.arraycopy(array_, 0, newArray, 0, len); Iterator e = c.iterator(); for (int i = 0; i < numNew; i++) newArray[len++] = e.next(); array_ = newArray; return true; } /** * Inserts all of the elements in the specified Collection into this list, * starting at the specified position. Shifts the element currently at that * position (if any) and any subsequent elements to the right (increases * their indices). The new elements will appear in the list in the order * that they are returned by the specified Collection"s iterator. * * @param index * index at which to insert first element from the specified * collection. * @param c * elements to be inserted into this list. * @exception IndexOutOfBoundsException * index out of range (index < 0 || index > size()). */ public synchronized boolean addAll(int index, Collection c) { int len = array_.length; if (index > len || index < 0) throw new IndexOutOfBoundsException("Index: " + index + ", Size: " + len); int numNew = c.size(); if (numNew == 0) return false; Object[] newArray = new Object[len + numNew]; System.arraycopy(array_, 0, newArray, 0, len); int numMoved = len - index; if (numMoved > 0) System.arraycopy(array_, index, newArray, index + numNew, numMoved); Iterator e = c.iterator(); for (int i = 0; i < numNew; i++) newArray[index++] = e.next(); array_ = newArray; return true; } /** * Check if the given index is in range. If not, throw an appropriate * runtime exception. * @param index * @param length */ protected void rangeCheck(int index, int length) { if (index >= length || index < 0) throw new IndexOutOfBoundsException("Index: " + index + ", Size: " + length); } /** * Save the state of the list to a stream (i.e., serialize it). * @param s * @throws java.io.IOException * * @serialData The length of the array backing the list is emitted (int), * followed by all of its elements (each an Object) in the * proper order. */ private void writeObject(java.io.ObjectOutputStream s) throws java.io.IOException { // Write out element count, and any hidden stuff s.defaultWriteObject(); Object[] elementData = array(); // Write out array length s.writeInt(elementData.length); // Write out all elements in the proper order. for (int i = 0; i < elementData.length; i++) s.writeObject(elementData[i]); } /** * Reconstitute the list from a stream (i.e., deserialize it). * @param s * @throws java.io.IOException * @throws ClassNotFoundException */ private synchronized void readObject(java.io.ObjectInputStream s) throws java.io.IOException, ClassNotFoundException { // Read in size, and any hidden stuff s.defaultReadObject(); // Read in array length and allocate array int arrayLength = s.readInt(); Object[] elementData = new Object[arrayLength]; // Read in all elements in the proper order. for (int i = 0; i < elementData.length; i++) elementData[i] = s.readObject(); array_ = elementData; } /** * Returns a string representation of this Collection, containing the String * representation of each element. */ public String toString() { StringBuffer buf = new StringBuffer(); Iterator e = iterator(); buf.append("["); int maxIndex = size() - 1; for (int i = 0; i <= maxIndex; i++) { buf.append(String.valueOf(e.next())); if (i < maxIndex) buf.append(", "); } buf.append("]"); return buf.toString(); } /** * Compares the specified Object with this List for equality. Returns true * if and only if the specified Object is also a List, both Lists have the * same size, and all corresponding pairs of elements in the two Lists are * equal. (Two elements e1 and e2 * are equal if * (e1==null ? e2==null : e1.equals(e2)).) In other words, * two Lists are defined to be equal if they contain the same elements in * the same order. * <p> * This implementation first checks if the specified object is this List. If * so, it returns true; if not, it checks if the specified object is a List. * If not, it returns false; if so, it iterates over both lists, comparing * corresponding pairs of elements. If any comparison returns false, this * method returns false. If either Iterator runs out of elements before * before the other it returns false (as the Lists are of unequal length); * otherwise it returns true when the iterations complete. * * @param o * the Object to be compared for equality with this List. * @return true if the specified Object is equal to this List. */ public boolean equals(Object o) { if (o == this) return true; if (!(o instanceof List)) return false; List l2 = (List)(o); if (size() != l2.size()) return false; ListIterator e1 = listIterator(); ListIterator e2 = l2.listIterator(); while (e1.hasNext()) { Object o1 = e1.next(); Object o2 = e2.next(); if (!(o1 == null ? o2 == null : o1.equals(o2))) return false; } return true; } /** * Returns the hash code value for this List. * <p> * This implementation uses exactly the code that is used to define the List * hash function in the documentation for List.hashCode. */ public int hashCode() { int hashCode = 1; Iterator i = iterator(); while (i.hasNext()) { Object obj = i.next(); hashCode = 31 * hashCode + (obj == null ? 0 : obj.hashCode()); } return hashCode; } /** * Returns an Iterator over the elements contained in this collection. The * iterator provides a snapshot of the state of the list when the iterator * was constructed. No synchronization is needed while traversing the * iterator. The iterator does NOT support the * remove method. */ public Iterator iterator() { return new COWIterator(array(), 0); } /** * Returns an Iterator of the elements in this List (in proper sequence). * The iterator provides a snapshot of the state of the list when the * iterator was constructed. No synchronization is needed while traversing * the iterator. The iterator does NOT support the * remove, set, or add * methods. * */ public ListIterator listIterator() { return new COWIterator(array(), 0); } /** * Returns a ListIterator of the elements in this List (in proper sequence), * starting at the specified position in the List. The specified index * indicates the first element that would be returned by an initial call to * nextElement. An initial call to previousElement would return the element * with the specified index minus one. The ListIterator returned by this * implementation will throw an UnsupportedOperationException in its remove, * set and add methods. * * @param index * index of first element to be returned from the ListIterator * (by a call to getNext). * @exception IndexOutOfBoundsException * index is out of range (index < 0 || index > size()). */ public ListIterator listIterator(final int index) { Object[] elementData = array(); int len = elementData.length; if (index < 0 || index > len) throw new IndexOutOfBoundsException("Index: " + index); return new COWIterator(array(), index); } protected static class COWIterator implements ListIterator { /** Snapshot of the array * */ protected final Object[] array; /** * Index of element to be returned by subsequent call to next. */ protected int cursor; protected COWIterator(Object[] elementArray, int initialCursor) { array = elementArray; cursor = initialCursor; } public boolean hasNext() { return cursor < array.length; } public boolean hasPrevious() { return cursor > 0; } public Object next() { try { return array[cursor++]; } catch (IndexOutOfBoundsException ex) { throw new NoSuchElementException(); } } public Object previous() { try { return array[--cursor]; } catch (IndexOutOfBoundsException e) { throw new NoSuchElementException(); } } public int nextIndex() { return cursor; } public int previousIndex() { return cursor - 1; } /** * Not supported. Always throws UnsupportedOperationException. * * @exception UnsupportedOperationException * remove is not supported by this Iterator. */ public void remove() { throw new UnsupportedOperationException(); } /** * Not supported. Always throws UnsupportedOperationException. * * @exception UnsupportedOperationException * set is not supported by this Iterator. */ public void set(Object o) { throw new UnsupportedOperationException(); } /** * Not supported. Always throws UnsupportedOperationException. * * @exception UnsupportedOperationException * add is not supported by this Iterator. */ public void add(Object o) { throw new UnsupportedOperationException(); } } /** * Returns a view of the portion of this List between fromIndex, inclusive, * and toIndex, exclusive. The returned List is backed by this List, so * changes in the returned List are reflected in this List, and vice-versa. * While mutative operations are supported, they are probably not very * useful for CopyOnWriteArrays. *

  * The semantics of the List returned by this method become undefined if the
  * backing list (i.e., this List) is structurally modified in any
  * way other than via the returned List. (Structural modifications are those
  * that change the size of the List, or otherwise perturb it in such a
  * fashion that iterations in progress may yield incorrect results.)
  * 
  * @param fromIndex
  *            low endpoint (inclusive) of the subList.
  * @param toKey
  *            high endpoint (exclusive) of the subList.
  * @return a view of the specified range within this List.
  * @exception IndexOutOfBoundsException
  *                Illegal endpoint index value (fromIndex < 0 || toIndex
  *                > size || fromIndex > toIndex).
  */
 public synchronized List subList(int fromIndex, int toIndex)
 {
   // synchronized since sublist ctor depends on it.
   int len = array_.length;
   if (fromIndex < 0 || toIndex > len || fromIndex > toIndex)
     throw new IndexOutOfBoundsException();
   return new COWSubList(this, fromIndex, toIndex);
 }
 protected static class COWSubList extends AbstractList
 {
   /*
    * This is currently a bit sleazy. The class extends AbstractList merely
    * for convenience, to avoid having to define addAll, etc. This doesn"t
    * hurt, but is stupid and wasteful. This class does not need or use
    * modCount mechanics in AbstractList, but does need to check for
    * concurrent modification using similar mechanics. On each operation,
    * the array that we expect the backing list to use is checked and
    * updated. Since we do this for all of the base operations invoked by
    * those defined in AbstractList, all is well.
    * 
    * It"s not clear whether this is worth cleaning up. The kinds of list
    * operations inherited from AbstractList are are already so slow on COW
    * sublists that adding a bit more space/time doesn"t seem even
    * noticeable.
    */
   protected final CopyOnWriteArrayList l;
   protected final int offset;
   protected int size;
   protected Object[] expectedArray;
   protected COWSubList(CopyOnWriteArrayList list, int fromIndex, int toIndex)
   {
     l = list;
     expectedArray = l.array();
     offset = fromIndex;
     size = toIndex - fromIndex;
   }
   // only call this holding l"s lock
   protected void checkForComodification()
   {
     if (l.array_ != expectedArray)
       throw new ConcurrentModificationException();
   }
   // only call this holding l"s lock
   protected void rangeCheck(int index)
   {
     if (index < 0 || index >= size)
       throw new IndexOutOfBoundsException("Index: " + index + ",Size: " + size);
   }
   public Object set(int index, Object element)
   {
     synchronized (l)
     {
       rangeCheck(index);
       checkForComodification();
       Object x = l.set(index + offset, element);
       expectedArray = l.array_;
       return x;
     }
   }
   public Object get(int index)
   {
     synchronized (l)
     {
       rangeCheck(index);
       checkForComodification();
       return l.get(index + offset);
     }
   }
   public int size()
   {
     synchronized (l)
     {
       checkForComodification();
       return size;
     }
   }
   public void add(int index, Object element)
   {
     synchronized (l)
     {
       checkForComodification();
       if (index < 0 || index > size)
         throw new IndexOutOfBoundsException();
       l.add(index + offset, element);
       expectedArray = l.array_;
       size++;
     }
   }
   public Object remove(int index)
   {
     synchronized (l)
     {
       rangeCheck(index);
       checkForComodification();
       Object result = l.remove(index + offset);
       expectedArray = l.array_;
       size--;
       return result;
     }
   }
   public Iterator iterator()
   {
     synchronized (l)
     {
       checkForComodification();
       return new COWSubListIterator(0);
     }
   }
   public ListIterator listIterator(final int index)
   {
     synchronized (l)
     {
       checkForComodification();
       if (index < 0 || index > size)
         throw new IndexOutOfBoundsException("Index: " + index + ", Size: " + size);
       return new COWSubListIterator(index);
     }
   }
   protected class COWSubListIterator implements ListIterator
   {
     protected final ListIterator i;
     protected final int index;
     protected COWSubListIterator(int index)
     {
       this.index = index;
       i = l.listIterator(index + offset);
     }
     public boolean hasNext()
     {
       return nextIndex() < size;
     }
     public Object next()
     {
       if (hasNext())
         return i.next();
       else
         throw new NoSuchElementException();
     }
     public boolean hasPrevious()
     {
       return previousIndex() >= 0;
     }
     public Object previous()
     {
       if (hasPrevious())
         return i.previous();
       else
         throw new NoSuchElementException();
     }
     public int nextIndex()
     {
       return i.nextIndex() - offset;
     }
     public int previousIndex()
     {
       return i.previousIndex() - offset;
     }
     public void remove()
     {
       throw new UnsupportedOperationException();
     }
     public void set(Object o)
     {
       throw new UnsupportedOperationException();
     }
     public void add(Object o)
     {
       throw new UnsupportedOperationException();
     }
   }
   public List subList(int fromIndex, int toIndex)
   {
     synchronized (l)
     {
       checkForComodification();
       if (fromIndex < 0 || toIndex > size)
         throw new IndexOutOfBoundsException();
       return new COWSubList(l, fromIndex + offset, toIndex + offset);
     }
   }
 }

}


 </source>
   
  
 
  



Convert a List (ArrayList) to an Array with full length array

   <source lang="java">
  

import java.util.ArrayList; import java.util.List; public class Main {

 public static void main(String[] args) {
   List<String> carList = new ArrayList<String>();
   carList.add("A");
   carList.add("B");
   carList.add("C");
   carList.add("D");
   String[] carArray = carList.toArray(new String[0]);
   for (String car : carArray) {
     System.out.println(car);
   }
 }

} /* A B C D

  • /


 </source>
   
  
 
  



Convert a List (ArrayList) to an Array with zero length array

   <source lang="java">
  

import java.util.ArrayList; import java.util.List; public class Main {

 public static void main(String[] args) {
   List<String> carList = new ArrayList<String>();
   carList.add("A");
   carList.add("B");
   carList.add("C");
   carList.add("D");
   String[] carArray = carList.toArray(new String[0]);
   for (String car : carArray) {
     System.out.println(car);
   }
 }

} /* A B C D

  • /



 </source>
   
  
 
  



Convert an ArrayList into an array.

   <source lang="java">
   

import java.util.ArrayList; class ArrayListToArray {

 public static void main(String args[]) {
   ArrayList<Integer> al = new ArrayList<Integer>();
   al.add(1);
   al.add(2);
   al.add(3);
   al.add(4);
   System.out.println("Contents of al: " + al);
   Integer ia[] = new Integer[al.size()];
   ia = al.toArray(ia);
   int sum = 0;
   for (int i : ia)
     sum += i;
   System.out.println("Sum is: " + sum);
 }

}


 </source>
   
  
 
  



Copy all elements of Java ArrayList to an Object Array

   <source lang="java">
  

import java.util.ArrayList; public class Main {

 public static void main(String[] args) {
   ArrayList<String> arrayList = new ArrayList<String>();
   arrayList.add("1");
   arrayList.add("2");
   arrayList.add("3");
   arrayList.add("4");
   arrayList.add("5");
   Object[] objArray = arrayList.toArray();
   for (Object obj : objArray)
     System.out.println(obj);
 }

}


 </source>
   
  
 
  



Copy Elements of ArrayList to Java Vector

   <source lang="java">
  

import java.util.ArrayList; import java.util.Collections; import java.util.Vector; public class Main {

 public static void main(String[] args) {
   ArrayList<String> arrayList = new ArrayList<String>();
   arrayList.add("1");
   arrayList.add("2");
   arrayList.add("3");
   arrayList.add("4");
   arrayList.add("5");
   Vector<String> v = new Vector<String>();
   v.add("A");
   v.add("B");
   v.add("D");
   v.add("E");
   v.add("F");
   v.add("G");
   v.add("H");
   System.out.println(v);
   Collections.copy(v, arrayList);
   System.out.println(v);
 }

} /* [A, B, D, E, F, G, H] [1, 2, 3, 4, 5, G, H]

  • /


 </source>
   
  
 
  



Copy Elements of One Java ArrayList to Another Java ArrayList

   <source lang="java">
  

import java.util.ArrayList; import java.util.Collections; public class Main {

 public static void main(String[] args) {
   ArrayList<String> arrayList1 = new ArrayList<String>();
   arrayList1.add("1");
   arrayList1.add("2");
   arrayList1.add("3");
   ArrayList<String> arrayList2 = new ArrayList<String>();
   arrayList2.add("One");
   arrayList2.add("Two");
   arrayList2.add("Three");
   arrayList2.add("Four");
   arrayList2.add("Five");
   System.out.println(arrayList2);
   Collections.copy(arrayList2, arrayList1);
   System.out.println(arrayList2);
 }

} /* [One, Two, Three, Four, Five] [1, 2, 3, Four, Five]

  • /


 </source>
   
  
 
  



Copy On Write ArrayList

   <source lang="java">
  

/*

* Written by Doug Lea with assistance from members of JCP JSR-166
* Expert Group.  Adapted and released, under explicit permission,
* from JDK ArrayList.java which carries the following copyright:
*
* Copyright 1997 by Sun Microsystems, Inc.,
* 901 San Antonio Road, Palo Alto, California, 94303, U.S.A.
* All rights reserved.
*
* This software is the confidential and proprietary information
* of Sun Microsystems, Inc. ("Confidential Information").  You
* shall not disclose such Confidential Information and shall use
* it only in accordance with the terms of the license agreement
* you entered into with Sun.
*/

import java.util.AbstractList; import java.util.Collection; import java.util.ConcurrentModificationException; import java.util.Iterator; import java.util.List; import java.util.ListIterator; import java.util.NoSuchElementException; import java.util.RandomAccess;

/**

* A thread-safe variant of {@link java.util.ArrayList} in which all mutative
* operations (add, set, and so on) are implemented by
* making a fresh copy of the underlying array.
*
*

This is ordinarily too costly, but may be more efficient * than alternatives when traversal operations vastly outnumber * mutations, and is useful when you cannot or don"t want to * synchronize traversals, yet need to preclude interference among * concurrent threads. The "snapshot" style iterator method uses a * reference to the state of the array at the point that the iterator * was created. This array never changes during the lifetime of the * iterator, so interference is impossible and the iterator is * guaranteed not to throw ConcurrentModificationException. * The iterator will not reflect additions, removals, or changes to * the list since the iterator was created. Element-changing * operations on iterators themselves (remove, set, and * add) are not supported. These methods throw * UnsupportedOperationException. * * <p>All elements are permitted, including null. * * <p>This class is a member of the * . * * @since 1.5 * @author Doug Lea */ public class CopyOnWriteArrayList implements List, RandomAccess, Cloneable, java.io.Serializable { private static final long serialVersionUID = 8673264195747942595L; /** The array, accessed only via getArray/setArray. */ private volatile transient Object[] array; /** * This has been made public to support more efficient iteration. * DO NOT MODIFY this array upon getting it. * Otherwise you risk wreaking havoc on your list. In fact, if you are * not the author of this comment, you probably shouldn"t use it at all. * @return this lists internal array */ public Object[] getArray() { return array; } void setArray(Object[] a) { array = a; } /** * Creates an empty list. */ public CopyOnWriteArrayList() { setArray(new Object[0]); } /** * Creates a list containing the elements of the specified * collection, in the order they are returned by the collection"s * iterator. * * @param c the collection of initially held elements * @throws NullPointerException if the specified collection is null */ public CopyOnWriteArrayList(Collection c) { Object[] elements = new Object[c.size()]; int size = 0; for (Iterator itr = c.iterator(); itr.hasNext(); ) { Object e = itr.next(); elements[size++] = e; } setArray(elements); } /** * Creates a list holding a copy of the given array. * * @param toCopyIn the array (a copy of this array is used as the * internal array) * @throws NullPointerException if the specified array is null */ public CopyOnWriteArrayList(Object[] toCopyIn) { copyIn(toCopyIn, 0, toCopyIn.length); } /** * Replaces the held array with a copy of the n elements * of the provided array, starting at position first. To * copy an entire array, call with arguments (array, 0, * array.length). * @param toCopyIn the array. A copy of the indicated elements of * this array is used as the internal array. * @param first The index of first position of the array to * start copying from. * @param n the number of elements to copy. This will be the new size of * the list. */ private void copyIn(Object[] toCopyIn, int first, int n) { int limit = first + n; if (limit > toCopyIn.length) throw new IndexOutOfBoundsException(); Object[] newElements = copyOfRange(toCopyIn, first, limit, Object[].class); synchronized (this) { setArray(newElements); } } /** * Returns the number of elements in this list. * * @return the number of elements in this list */ public int size() { return getArray().length; } /** * Returns true if this list contains no elements. * * @return true if this list contains no elements */ public boolean isEmpty() { return size() == 0; } /** * Test for equality, coping with nulls. */ private static boolean eq(Object o1, Object o2) { return (o1 == null ? o2 == null : o1.equals(o2)); } /** * static version of indexOf, to allow repeated calls without * needing to re-acquire array each time. * @param o element to search for * @param elements the array * @param index first index to search * @param fence one past last index to search * @return index of element, or -1 if absent */ private static int indexOf(Object o, Object[] elements, int index, int fence) { if (o == null) { for (int i = index; i < fence; i++) if (elements[i] == null) return i; } else { for (int i = index; i < fence; i++) if (o.equals(elements[i])) return i; } return -1; } /** * static version of lastIndexOf. * @param o element to search for * @param elements the array * @param index first index to search * @return index of element, or -1 if absent */ private static int lastIndexOf(Object o, Object[] elements, int index) { if (o == null) { for (int i = index; i >= 0; i--) if (elements[i] == null) return i; } else { for (int i = index; i >= 0; i--) if (o.equals(elements[i])) return i; } return -1; } /** * Returns true if this list contains the specified element. * More formally, returns true if and only if this list contains * at least one element e such that * (o==null ? e==null : o.equals(e)). * * @param o element whose presence in this list is to be tested * @return true if this list contains the specified element */ public boolean contains(Object o) { Object[] elements = getArray(); return indexOf(o, elements, 0, elements.length) >= 0; } /** * {@inheritDoc} */ public int indexOf(Object o) { Object[] elements = getArray(); return indexOf(o, elements, 0, elements.length); } /** * Returns the index of the first occurrence of the specified element in * this list, searching forwards from index, or returns -1 if * the element is not found. * More formally, returns the lowest index i such that * (i >= index && (e==null ? get(i)==null : e.equals(get(i)))), * or -1 if there is no such index. * * @param e element to search for * @param index index to start searching from * @return the index of the first occurrence of the element in * this list at position index or later in the list; * -1 if the element is not found. * @throws IndexOutOfBoundsException if the specified index is negative */ public int indexOf(Object e, int index) { Object[] elements = getArray(); return indexOf(e, elements, index, elements.length); } /** * {@inheritDoc} */ public int lastIndexOf(Object o) { Object[] elements = getArray(); return lastIndexOf(o, elements, elements.length - 1); } /** * Returns the index of the last occurrence of the specified element in * this list, searching backwards from index, or returns -1 if * the element is not found. * More formally, returns the highest index i such that * (i <= index && (e==null ? get(i)==null : e.equals(get(i)))), * or -1 if there is no such index. * * @param e element to search for * @param index index to start searching backwards from * @return the index of the last occurrence of the element at position * less than or equal to index in this list; * -1 if the element is not found. * @throws IndexOutOfBoundsException if the specified index is greater * than or equal to the current size of this list */ public int lastIndexOf(Object e, int index) { Object[] elements = getArray(); return lastIndexOf(e, elements, index); } /** * Returns a shallow copy of this list. (The elements themselves * are not copied.) * * @return a clone of this list */ public Object clone() { try { return super.clone(); } catch (CloneNotSupportedException e) { // this shouldn"t happen, since we are Cloneable throw new InternalError(); } } /** * Returns an array containing all of the elements in this list * in proper sequence (from first to last element). * * <p>The returned array will be "safe" in that no references to it are * maintained by this list. (In other words, this method must allocate * a new array). The caller is thus free to modify the returned array. * * <p>This method acts as bridge between array-based and collection-based * APIs. * * @return an array containing all the elements in this list */ public Object[] toArray() { Object[] elements = getArray(); return copyOf(elements, elements.length); } /** * Returns an array containing all of the elements in this list in * proper sequence (from first to last element); the runtime type of * the returned array is that of the specified array. If the list fits * in the specified array, it is returned therein. Otherwise, a new * array is allocated with the runtime type of the specified array and * the size of this list. * * <p>If this list fits in the specified array with room to spare * (i.e., the array has more elements than this list), the element in * the array immediately following the end of the list is set to * null. (This is useful in determining the length of this * list only if the caller knows that this list does not contain * any null elements.) * * <p>Like the {@link #toArray()} method, this method acts as bridge between * array-based and collection-based APIs. Further, this method allows * precise control over the runtime type of the output array, and may, * under certain circumstances, be used to save allocation costs. * * <p>Suppose x is a list known to contain only strings. * The following code can be used to dump the list into a newly * allocated array of String: * *

     *     String[] y = x.toArray(new String[0]);
    *
    * Note that toArray(new Object[0]) is identical in function to
    * toArray().
    *
    * @param a the array into which the elements of the list are to
    *          be stored, if it is big enough; otherwise, a new array of the
    *          same runtime type is allocated for this purpose.
    * @return an array containing all the elements in this list
    * @throws ArrayStoreException if the runtime type of the specified array
    *         is not a supertype of the runtime type of every element in
    *         this list
    * @throws NullPointerException if the specified array is null
    */
   public Object[] toArray(Object a[]) {
       Object[] elements = getArray();
       int len = elements.length;
       if (a.length < len)
           return copyOf(elements, len, a.getClass());
       else {
           System.arraycopy(elements, 0, a, 0, len);
           if (a.length > len)
               a[len] = null;
           return a;
       }
   }
   // Positional Access Operations
   /**
    * {@inheritDoc}
    *
    * @throws IndexOutOfBoundsException {@inheritDoc}
    */
   public Object get(int index) {
       return (getArray()[index]);
   }
   /**
    * Replaces the element at the specified position in this list with the
    * specified element.
    *
    * @throws IndexOutOfBoundsException {@inheritDoc}
    */
   public synchronized Object set(int index, Object element) {
       Object[] elements = getArray();
       int len = elements.length;
       Object oldValue = elements[index];
       if (oldValue != element) {
           Object[] newElements = copyOf(elements, len);
           newElements[index] = element;
           setArray(newElements);
       }
       return oldValue;
   }
   /**
    * Appends the specified element to the end of this list.
    *
    * @param e element to be appended to this list
    * @return true (as per the spec for {@link Collection#add})
    */
   public boolean add(Object e) {
       synchronized (this) {
           Object[] elements = getArray();
           int len = elements.length;
           Object[] newElements = copyOf(elements, len + 1);
           newElements[len] = e;
           setArray(newElements);
       }
       return true;
   }
   /**
    * Inserts the specified element at the specified position in this
    * list. Shifts the element currently at that position (if any) and
    * any subsequent elements to the right (adds one to their indices).
    *
    * @throws IndexOutOfBoundsException {@inheritDoc}
    */
   public synchronized void add(int index, Object element) {
       Object[] elements = getArray();
       int len = elements.length;
       if (index > len || index < 0)
           throw new IndexOutOfBoundsException("Index: " + index+
                                               ", Size: " + len);
       Object[] newElements;
       int numMoved = len - index;
       if (numMoved == 0)
           newElements = copyOf(elements, len + 1);
       else {
           newElements = new Object[len + 1];
           System.arraycopy(elements, 0, newElements, 0, index);
           System.arraycopy(elements, index, newElements, index + 1,
                            numMoved);
       }
       newElements[index] = element;
       setArray(newElements);
   }
   /**
    * Removes the element at the specified position in this list.
    * Shifts any subsequent elements to the left (subtracts one from their
    * indices).  Returns the element that was removed from the list.
    *
    * @throws IndexOutOfBoundsException {@inheritDoc}
    */
   public synchronized Object remove(int index) {
       Object[] elements = getArray();
       int len = elements.length;
       Object oldValue = elements[index];
       int numMoved = len - index - 1;
       if (numMoved == 0)
           setArray(copyOf(elements, len - 1));
       else {
           Object[] newElements = new Object[len - 1];
           System.arraycopy(elements, 0, newElements, 0, index);
           System.arraycopy(elements, index + 1, newElements, index,
                            numMoved);
           setArray(newElements);
       }
       return oldValue;
   }
   /**
    * Removes the first occurrence of the specified element from this list,
    * if it is present.  If this list does not contain the element, it is
    * unchanged.  More formally, removes the element with the lowest index
    * i such that
    * (o==null ? get(i)==null : o.equals(get(i)))
    * (if such an element exists).  Returns true if this list
    * contained the specified element (or equivalently, if this list
    * changed as a result of the call).
    *
    * @param o element to be removed from this list, if present
    * @return true if this list contained the specified element
    */
   public synchronized boolean remove(Object o) {
       Object[] elements = getArray();
       int len = elements.length;
       if (len != 0) {
           // Copy while searching for element to remove
           // This wins in the normal case of element being present
           int newlen = len - 1;
           Object[] newElements = new Object[newlen];
           for (int i = 0; i < newlen; ++i) {
               if (eq(o, elements[i])) {
                   // found one;  copy remaining and exit
                   for (int k = i + 1; k < len; ++k)
                       newElements[k-1] = elements[k];
                   setArray(newElements);
                   return true;
               } else
                   newElements[i] = elements[i];
           }
           // special handling for last cell
           if (eq(o, elements[newlen])) {
               setArray(newElements);
               return true;
           }
       }
       return false;
   }
   /**
    * Removes from this list all of the elements whose index is between
    * fromIndex, inclusive, and toIndex, exclusive.
    * Shifts any succeeding elements to the left (reduces their index).
    * This call shortens the list by (toIndex - fromIndex) elements.
    * (If toIndex==fromIndex, this operation has no effect.)
    *
    * @param fromIndex index of first element to be removed
    * @param toIndex index after last element to be removed
    * @throws IndexOutOfBoundsException if fromIndex or toIndex out of
    *              range (fromIndex < 0 || fromIndex >= size() || toIndex
    *              > size() || toIndex < fromIndex)
    */
   private synchronized void removeRange(int fromIndex, int toIndex) {
       Object[] elements = getArray();
       int len = elements.length;
       if (fromIndex < 0 || fromIndex >= len ||
           toIndex > len || toIndex < fromIndex)
           throw new IndexOutOfBoundsException();
       int newlen = len - (toIndex - fromIndex);
       int numMoved = len - toIndex;
       if (numMoved == 0)
           setArray(copyOf(elements, newlen));
       else {
           Object[] newElements = new Object[newlen];
           System.arraycopy(elements, 0, newElements, 0, fromIndex);
           System.arraycopy(elements, toIndex, newElements,
                            fromIndex, numMoved);
           setArray(newElements);
       }
   }
   /**
    * Append the element if not present.
    *
    * @param e element to be added to this list, if absent
    * @return true if the element was added
    */
   public synchronized boolean addIfAbsent(Object e) {
       // Copy while checking if already present.
       // This wins in the most common case where it is not present
       Object[] elements = getArray();
       int len = elements.length;
       Object[] newElements = new Object[len + 1];
       for (int i = 0; i < len; ++i) {
           if (eq(e, elements[i]))
               return false; // exit, throwing away copy
           else
               newElements[i] = elements[i];
       }
       newElements[len] = e;
       setArray(newElements);
       return true;
   }
   /**
    * Returns true if this list contains all of the elements of the
    * specified collection.
    *
    * @param c collection to be checked for containment in this list
    * @return true if this list contains all of the elements of the
    *         specified collection
    * @throws NullPointerException if the specified collection is null
    * @see #contains(Object)
    */
   public boolean containsAll(Collection c) {
       Object[] elements = getArray();
       int len = elements.length;
       for (Iterator itr = c.iterator(); itr.hasNext(); ) {
           Object e = itr.next();
           if (indexOf(e, elements, 0, len) < 0)
               return false;
       }
       return true;
   }
   /**
    * Removes from this list all of its elements that are contained in
    * the specified collection. This is a particularly expensive operation
    * in this class because of the need for an internal temporary array.
    *
    * @param c collection containing elements to be removed from this list
    * @return true if this list changed as a result of the call
    * @throws ClassCastException if the class of an element of this list
    *         is incompatible with the specified collection (optional)
    * @throws NullPointerException if this list contains a null element and the
    *         specified collection does not permit null elements (optional),
    *         or if the specified collection is null
    * @see #remove(Object)
    */
   public synchronized boolean removeAll(Collection c) {
       Object[] elements = getArray();
       int len = elements.length;
       if (len != 0) {
           // temp array holds those elements we know we want to keep
           int newlen = 0;
           Object[] temp = new Object[len];
           for (int i = 0; i < len; ++i) {
               Object element = elements[i];
               if (!c.contains(element))
                   temp[newlen++] = element;
           }
           if (newlen != len) {
               setArray(copyOfRange(temp, 0, newlen, Object[].class));
               return true;
           }
       }
       return false;
   }
   /**
    * Retains only the elements in this list that are contained in the
    * specified collection.  In other words, removes from this list all of
    * its elements that are not contained in the specified collection.
    *
    * @param c collection containing elements to be retained in this list
    * @return true if this list changed as a result of the call
    * @throws ClassCastException if the class of an element of this list
    *         is incompatible with the specified collection (optional)
    * @throws NullPointerException if this list contains a null element and the
    *         specified collection does not permit null elements (optional),
    *         or if the specified collection is null
    * @see #remove(Object)
    */
   public synchronized boolean retainAll(Collection c) {
       Object[] elements = getArray();
       int len = elements.length;
       if (len != 0) {
           // temp array holds those elements we know we want to keep
           int newlen = 0;
           Object[] temp = new Object[len];
           for (int i = 0; i < len; ++i) {
               Object element = elements[i];
               if (c.contains(element))
                   temp[newlen++] = element;
           }
           if (newlen != len) {
               setArray(copyOfRange(temp, 0, newlen, Object[].class));
               return true;
           }
       }
       return false;
   }
   /**
    * Appends all of the elements in the specified collection that
    * are not already contained in this list, to the end of
    * this list, in the order that they are returned by the
    * specified collection"s iterator.
    *
    * @param c collection containing elements to be added to this list
    * @return the number of elements added
    * @throws NullPointerException if the specified collection is null
    * @see #addIfAbsent(Object)
    */
   public int addAllAbsent(Collection c) {
       int numNew = c.size();
       if (numNew == 0)
           return 0;
       synchronized (this) {
           Object[] elements = getArray();
           int len = elements.length;
           Object[] temp = new Object[numNew];
           int added = 0;
           for (Iterator itr = c.iterator(); itr.hasNext(); ) {
               Object e = itr.next();
               if (indexOf(e, elements, 0, len) < 0 &&
                   indexOf(e, temp, 0, added) < 0)
                   temp[added++] = e;
           }
           if (added != 0) {
               Object[] newElements = new Object[len + added];
               System.arraycopy(elements, 0, newElements, 0, len);
               System.arraycopy(temp, 0, newElements, len, added);
               setArray(newElements);
           }
           return added;
       }
   }
   /**
    * Removes all of the elements from this list.
    * The list will be empty after this call returns.
    */
   public synchronized void clear() {
       setArray(new Object[0]);
   }
   /**
    * Appends all of the elements in the specified collection to the end
    * of this list, in the order that they are returned by the specified
    * collection"s iterator.
    *
    * @param c collection containing elements to be added to this list
    * @return true if this list changed as a result of the call
    * @throws NullPointerException if the specified collection is null
    * @see #add(Object)
    */
   public boolean addAll(Collection c) {
       int numNew = c.size();
       if (numNew == 0)
           return false;
       synchronized (this) {
           Object[] elements = getArray();
           int len = elements.length;
           Object[] newElements = new Object[len + numNew];
           System.arraycopy(elements, 0, newElements, 0, len);
           for (Iterator itr = c.iterator(); itr.hasNext(); ) {
               Object e = itr.next();
               newElements[len++] = e;
           }
           setArray(newElements);
           return true;
       }
   }
   /**
    * Inserts all of the elements in the specified collection into this
    * list, starting at the specified position.  Shifts the element
    * currently at that position (if any) and any subsequent elements to
    * the right (increases their indices).  The new elements will appear
    * in this list in the order that they are returned by the
    * specified collection"s iterator.
    *
    * @param index index at which to insert the first element
    *        from the specified collection
    * @param c collection containing elements to be added to this list
    * @return true if this list changed as a result of the call
    * @throws IndexOutOfBoundsException {@inheritDoc}
    * @throws NullPointerException if the specified collection is null
    * @see #add(int,Object)
    */
   public boolean addAll(int index, Collection c) {
       int numNew = c.size();
       synchronized (this) {
           Object[] elements = getArray();
           int len = elements.length;
           if (index > len || index < 0)
               throw new IndexOutOfBoundsException("Index: " + index +
                                                   ", Size: "+ len);
           if (numNew == 0)
               return false;
           int numMoved = len - index;
           Object[] newElements;
           if (numMoved == 0)
               newElements = copyOf(elements, len + numNew);
           else {
               newElements = new Object[len + numNew];
               System.arraycopy(elements, 0, newElements, 0, index);
               System.arraycopy(elements, index,
                                newElements, index + numNew,
                                numMoved);
           }
           for (Iterator itr = c.iterator(); itr.hasNext(); ) {
               Object e = itr.next();
               newElements[index++] = e;
           }
           setArray(newElements);
           return true;
       }
   }
   /**
    * Save the state of the list to a stream (i.e., serialize it).
    *
    * @serialData The length of the array backing the list is emitted
    *               (int), followed by all of its elements (each an Object)
    *               in the proper order.
    * @param s the stream
    */
   private void writeObject(java.io.ObjectOutputStream s)
       throws java.io.IOException{
       // Write out element count, and any hidden stuff
       s.defaultWriteObject();
       Object[] elements = getArray();
       int len = elements.length;
       // Write out array length
       s.writeInt(len);
       // Write out all elements in the proper order.
       for (int i = 0; i < len; i++)
           s.writeObject(elements[i]);
   }
   /**
    * Reconstitute the list from a stream (i.e., deserialize it).
    * @param s the stream
    */
   private void readObject(java.io.ObjectInputStream s)
       throws java.io.IOException, ClassNotFoundException {
       // Read in size, and any hidden stuff
       s.defaultReadObject();
       // Read in array length and allocate array
       int len = s.readInt();
       Object[] elements = new Object[len];
       // Read in all elements in the proper order.
       for (int i = 0; i < len; i++)
           elements[i] = s.readObject();
       setArray(elements);
   }
   /**
    * Returns a string representation of this list, containing
    * the String representation of each element.
    */
   public String toString() {
       Object[] elements = getArray();
       int maxIndex = elements.length - 1;
       StringBuffer buf = new StringBuffer();
       buf.append("[");
       for (int i = 0; i <= maxIndex; i++) {
           buf.append(String.valueOf(elements[i]));
           if (i < maxIndex)
               buf.append(", ");
       }
       buf.append("]");
       return buf.toString();
   }
   /**
    * Compares the specified object with this list for equality.
    * Returns true if and only if the specified object is also a {@link
    * List}, both lists have the same size, and all corresponding pairs
    * of elements in the two lists are equal.  (Two elements
    * e1 and e2 are equal if (e1==null ?
    * e2==null : e1.equals(e2)).)  In other words, two lists are
    * defined to be equal if they contain the same elements in the same
    * order.
    *
    * @param o the object to be compared for equality with this list
    * @return true if the specified object is equal to this list
    */
   public boolean equals(Object o) {
       if (o == this)
           return true;
       if (!(o instanceof List))
           return false;
       List l2 = (List)(o);
       if (size() != l2.size())
           return false;
       ListIterator e1 = listIterator();
       ListIterator e2 = l2.listIterator();
       while (e1.hasNext()) {
           if (!eq(e1.next(), e2.next()))
               return false;
       }
       return true;
   }
   /**
    * Returns the hash code value for this list.
    *
    * <p>This implementation uses the definition in {@link List#hashCode}.
    *
    * @return the hash code value for this list
    */
   public int hashCode() {
       int hashCode = 1;
       Object[] elements = getArray();
       int len = elements.length;
       for (int i = 0; i < len; ++i) {
           Object obj = elements[i];
           hashCode = 31*hashCode + (obj==null ? 0 : obj.hashCode());
       }
       return hashCode;
   }
   /**
    * Returns an iterator over the elements in this list in proper sequence.
    *
    * <p>The returned iterator provides a snapshot of the state of the list
    * when the iterator was constructed. No synchronization is needed while
    * traversing the iterator. The iterator does NOT support the
    * remove method.
    *
    * @return an iterator over the elements in this list in proper sequence
    */
   public Iterator iterator() {
       return new COWIterator(getArray(), 0);
   }
   /**
    * {@inheritDoc}
    *
    * <p>The returned iterator provides a snapshot of the state of the list
    * when the iterator was constructed. No synchronization is needed while
    * traversing the iterator. The iterator does NOT support the
    * remove, set or add methods.
    */
   public ListIterator listIterator() {
       return new COWIterator(getArray(), 0);
   }
   /**
    * {@inheritDoc}
    *
    * <p>The list iterator returned by this implementation will throw an
    * UnsupportedOperationException in its remove,
    * set and add methods.
    *
    * @throws IndexOutOfBoundsException {@inheritDoc}
    */
   public ListIterator listIterator(final int index) {
       Object[] elements = getArray();
       int len = elements.length;
       if (index < 0 || index > len)
           throw new IndexOutOfBoundsException("Index: " + index);
       return new COWIterator(getArray(), index);
   }
   private static class COWIterator implements ListIterator {
       /** Snapshot of the array **/
       private final Object[] snapshot;
       /** Index of element to be returned by subsequent call to next.  */
       private int cursor;
       private COWIterator(Object[] elements, int initialCursor) {
           cursor = initialCursor;
           snapshot = elements;
       }
       public boolean hasNext() {
           return cursor < snapshot.length;
       }
       public boolean hasPrevious() {
           return cursor > 0;
       }
       public Object next() {
           try {
               return (snapshot[cursor++]);
           } catch (IndexOutOfBoundsException ex) {
               throw new NoSuchElementException();
           }
       }
       public Object previous() {
           try {
               return (snapshot[--cursor]);
           } catch (IndexOutOfBoundsException e) {
               throw new NoSuchElementException();
           }
       }
       public int nextIndex() {
           return cursor;
       }
       public int previousIndex() {
           return cursor - 1;
       }
       /**
        * Not supported. Always throws UnsupportedOperationException.
        * @throws UnsupportedOperationException always; remove
        *         is not supported by this iterator.
        */
       public void remove() {
           throw new UnsupportedOperationException();
       }
       /**
        * Not supported. Always throws UnsupportedOperationException.
        * @throws UnsupportedOperationException always; set
        *         is not supported by this iterator.
        */
       public void set(Object e) {
           throw new UnsupportedOperationException();
       }
       /**
        * Not supported. Always throws UnsupportedOperationException.
        * @throws UnsupportedOperationException always; add
        *         is not supported by this iterator.
        */
       public void add(Object e) {
           throw new UnsupportedOperationException();
       }
   }
   /**
    * Returns a view of the portion of this list between
    * fromIndex, inclusive, and toIndex, exclusive.
    * The returned list is backed by this list, so changes in the
    * returned list are reflected in this list, and vice-versa.
    * While mutative operations are supported, they are probably not
    * very useful for CopyOnWriteArrayLists.
    *
    * <p>The semantics of the list returned by this method become
    * undefined if the backing list (i.e., this list) is
    * structurally modified in any way other than via the
    * returned list.  (Structural modifications are those that change
    * the size of the list, or otherwise perturb it in such a fashion
    * that iterations in progress may yield incorrect results.)
    *
    * @param fromIndex low endpoint (inclusive) of the subList
    * @param toIndex high endpoint (exclusive) of the subList
    * @return a view of the specified range within this list
    * @throws IndexOutOfBoundsException {@inheritDoc}
    */
   public synchronized List subList(int fromIndex, int toIndex) {
       Object[] elements = getArray();
       int len = elements.length;
       if (fromIndex < 0 || toIndex > len  || fromIndex > toIndex)
           throw new IndexOutOfBoundsException();
       return new COWSubList(this, fromIndex, toIndex);
   }
   /**
    * Sublist for CopyOnWriteArrayList.
    * This class extends AbstractList merely for convenience, to
    * avoid having to define addAll, etc. This doesn"t hurt, but
    * is wasteful.  This class does not need or use modCount
    * mechanics in AbstractList, but does need to check for
    * concurrent modification using similar mechanics.  On each
    * operation, the array that we expect the backing list to use
    * is checked and updated.  Since we do this for all of the
    * base operations invoked by those defined in AbstractList,
    * all is well.  While inefficient, this is not worth
    * improving.  The kinds of list operations inherited from
    * AbstractList are already so slow on COW sublists that
    * adding a bit more space/time doesn"t seem even noticeable.
    */
   private static class COWSubList extends AbstractList {
       private final CopyOnWriteArrayList l;
       private final int offset;
       private int size;
       private Object[] expectedArray;
       // only call this holding l"s lock
       private COWSubList(CopyOnWriteArrayList list,
                          int fromIndex, int toIndex) {
           l = list;
           expectedArray = l.getArray();
           offset = fromIndex;
           size = toIndex - fromIndex;
       }
       // only call this holding l"s lock
       private void checkForComodification() {
           if (l.getArray() != expectedArray)
               throw new ConcurrentModificationException();
       }
       // only call this holding l"s lock
       private void rangeCheck(int index) {
           if (index < 0 || index >= size)
               throw new IndexOutOfBoundsException("Index: " + index +
                                                   ",Size: " + size);
       }
       public Object set(int index, Object element) {
           synchronized (l) {
               rangeCheck(index);
               checkForComodification();
               Object x = l.set(index + offset, element);
               expectedArray = l.getArray();
               return x;
           }
       }
       public Object get(int index) {
           synchronized (l) {
               rangeCheck(index);
               checkForComodification();
               return l.get(index + offset);
           }
       }
       public int size() {
           synchronized (l) {
               checkForComodification();
               return size;
           }
       }
       public void add(int index, Object element) {
           synchronized (l) {
               checkForComodification();
               if (index<0 || index>size)
                   throw new IndexOutOfBoundsException();
               l.add(index + offset, element);
               expectedArray = l.getArray();
               size++;
           }
       }
       public void clear() {
           synchronized (l) {
               checkForComodification();
               l.removeRange(offset, offset+size);
               expectedArray = l.getArray();
               size = 0;
           }
       }
       public Object remove(int index) {
           synchronized (l) {
               rangeCheck(index);
               checkForComodification();
               Object result = l.remove(index + offset);
               expectedArray = l.getArray();
               size--;
               return result;
           }
       }
       public Iterator iterator() {
           synchronized (l) {
               checkForComodification();
               return new COWSubListIterator(l, 0, offset, size);
           }
       }
       public ListIterator listIterator(final int index) {
           synchronized (l) {
               checkForComodification();
               if (index<0 || index>size)
                   throw new IndexOutOfBoundsException("Index: "+index+
                                                       ", Size: "+size);
               return new COWSubListIterator(l, index, offset, size);
           }
       }
       public List subList(int fromIndex, int toIndex) {
           synchronized (l) {
               checkForComodification();
               if (fromIndex<0 || toIndex>size)
                   throw new IndexOutOfBoundsException();
               return new COWSubList(l, fromIndex + offset,
                                        toIndex + offset);
           }
       }
   }
   private static class COWSubListIterator implements ListIterator {
       private final ListIterator i;
       private final int offset;
       private final int size;
       private COWSubListIterator(List l, int index, int offset,
                                  int size) {
           this.offset = offset;
           this.size = size;
           i = l.listIterator(index + offset);
       }
       public boolean hasNext() {
           return nextIndex() < size;
       }
       public Object next() {
           if (hasNext())
               return i.next();
           else
               throw new NoSuchElementException();
       }
       public boolean hasPrevious() {
           return previousIndex() >= 0;
       }
       public Object previous() {
           if (hasPrevious())
               return i.previous();
           else
               throw new NoSuchElementException();
       }
       public int nextIndex() {
           return i.nextIndex() - offset;
       }
       public int previousIndex() {
           return i.previousIndex() - offset;
       }
       public void remove() {
           throw new UnsupportedOperationException();
       }
       public void set(Object e) {
           throw new UnsupportedOperationException();
       }
       public void add(Object e) {
           throw new UnsupportedOperationException();
       }
   }

// // Support for resetting lock while deserializing // private static final Unsafe unsafe = Unsafe.getUnsafe(); // private static final long lockOffset; // static { // try { // lockOffset = unsafe.objectFieldOffset // (CopyOnWriteArrayList.class.getDeclaredField("lock")); // } catch (Exception ex) { throw new Error(ex); } // } // private void resetLock() { // unsafe.putObjectVolatile(this, lockOffset, new ReentrantLock()); // } //

   // Temporary emulations of anticipated new j.u.Arrays functions
   private static Object[] copyOfRange(Object[] original, int from, int to,
                                       Class newType) {
       int newLength = to - from;
       if (newLength < 0)
           throw new IllegalArgumentException(from + " > " + to);
       Object[] copy = (Object[]) java.lang.reflect.Array.newInstance
           (newType.getComponentType(), newLength);
       System.arraycopy(original, from, copy, 0,
                        Math.min(original.length - from, newLength));
       return copy;
   }
   private static Object[] copyOf(Object[] original, int newLength,
                                  Class newType) {
       Object[] copy = (Object[]) java.lang.reflect.Array.newInstance
           (newType.getComponentType(), newLength);
       System.arraycopy(original, 0, copy, 0,
                        Math.min(original.length, newLength));
       return copy;
   }
   private static Object[] copyOf(Object[] original, int newLength) {
       return copyOf(original, newLength, original.getClass());
   }

}


 </source>
   
  
 
  



Find maximum element of Java ArrayList

   <source lang="java">
  

import java.util.ArrayList; import java.util.Collections; public class Main {

 public static void main(String[] args) {
   ArrayList<Integer> arrayList = new ArrayList<Integer>();
   arrayList.add(new Integer("3"));
   arrayList.add(new Integer("1"));
   arrayList.add(new Integer("8"));
   arrayList.add(new Integer("3"));
   arrayList.add(new Integer("5"));
   Object obj = Collections.max(arrayList);
   System.out.println(obj);
 }

} //8


 </source>
   
  
 
  



Find Minimum element of Java ArrayList

   <source lang="java">
  

import java.util.ArrayList; import java.util.Collections; public class Main {

 public static void main(String[] args) {
   ArrayList<Integer> arrayList = new ArrayList<Integer>();
   arrayList.add(new Integer("1"));
   arrayList.add(new Integer("2"));
   arrayList.add(new Integer("3"));
   arrayList.add(new Integer("4"));
   arrayList.add(new Integer("5"));
   Object obj = Collections.min(arrayList);
   System.out.println(obj);
 }

}


 </source>
   
  
 
  



Get element in an ArrayList by index

   <source lang="java">
  

import java.util.ArrayList; public class Main {

 public static void main(String[] args) {
   ArrayList<String> arrayList = new ArrayList<String>();
   arrayList.add("1");
   arrayList.add("2");
   arrayList.add("3");
   System.out.println(arrayList.get(0));
   System.out.println(arrayList.get(1));
   System.out.println(arrayList.get(2));
 }

}


 </source>
   
  
 
  



Get Enumeration over Java ArrayList

   <source lang="java">
  

import java.util.ArrayList; import java.util.Collections; import java.util.Enumeration; public class Main {

 public static void main(String[] args) {
   ArrayList<String> arrayList = new ArrayList<String>();
   arrayList.add("A");
   arrayList.add("B");
   arrayList.add("D");
   arrayList.add("E");
   arrayList.add("F");
   Enumeration e = Collections.enumeration(arrayList);
   while (e.hasMoreElements())
     System.out.println(e.nextElement());
 }

}


 </source>
   
  
 
  



Get generic Iterator from generic ArrayList

   <source lang="java">
  

/*

* Copyright (c) 1995 - 2008 Sun Microsystems, Inc.  All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
*   - Redistributions of source code must retain the above copyright
*     notice, this list of conditions and the following disclaimer.
*
*   - Redistributions in binary form must reproduce the above copyright
*     notice, this list of conditions and the following disclaimer in the
*     documentation and/or other materials provided with the distribution.
*
*   - Neither the name of Sun Microsystems nor the names of its
*     contributors may be used to endorse or promote products derived
*     from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
* IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
* THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE COPYRIGHT OWNER OR
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
* LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
* NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/

import java.text.DateFormatSymbols; import java.util.ArrayList; import java.util.Arrays; import java.util.Collection; import java.util.Iterator; public class OysterMonths {

 Collection<String> safeMonths;
 public Collection<String> filter(Collection<String> c) {
   Collection<String> filteredCollection = new ArrayList<String>();
   for (Iterator<String> i = c.iterator(); i.hasNext();) {
     String s = i.next();
     if (condition(s)) {
       filteredCollection.add(s);
     }
   }
   return filteredCollection;
 }
 public boolean condition(String s) {
   return s.contains("r");
 }
 public static void main(String[] args) {
   OysterMonths om = new OysterMonths();
   DateFormatSymbols dfs = new DateFormatSymbols();
   String[] monthArray = dfs.getMonths();
   Collection<String> months = Arrays.asList(monthArray);
   om.safeMonths = om.filter(months);
   System.out.println("The following months are safe for oysters:");
   System.out.println(om.safeMonths);
 }

}


 </source>
   
  
 
  



Get Previous and next index using Java ListIterator

   <source lang="java">
  

import java.util.ArrayList; import java.util.ListIterator; public class Main {

 public static void main(String[] args) {
   ArrayList<String> aList = new ArrayList<String>();
   aList.add("1");
   aList.add("2");
   aList.add("3");
   aList.add("4");
   aList.add("5");
   ListIterator<String> listIterator = aList.listIterator();
   System.out.println("Previous: " + listIterator.previousIndex());
   System.out.println("Next: " + listIterator.nextIndex());
   // advance current position by one using next method
   listIterator.next();
   System.out.println("Previous: " + listIterator.previousIndex());
   System.out.println("Next: " + listIterator.nextIndex());
 }

}


 </source>
   
  
 
  



Get Size of Java ArrayList and loop through elements

   <source lang="java">
  

import java.util.ArrayList; public class Main {

 public static void main(String[] args) {
   ArrayList<String> arrayList = new ArrayList<String>();
   arrayList.add("1");
   arrayList.add("2");
   arrayList.add("3");
   int totalElements = arrayList.size();
   for (int index = 0; index < totalElements; index++)
     System.out.println(arrayList.get(index));
 }

}


 </source>
   
  
 
  



Get Sub List of Java ArrayList

   <source lang="java">
  

import java.util.ArrayList; import java.util.List; public class Main {

 public static void main(String[] args) {
   ArrayList<String> arrayList = new ArrayList<String>();
   arrayList.add("1");
   arrayList.add("2");
   arrayList.add("3");
   arrayList.add("4");
   arrayList.add("5");
   List lst = arrayList.subList(1, 3);
   for (int i = 0; i < lst.size(); i++)
     System.out.println(lst.get(i));
   // remove one element from sub list
   Object obj = lst.remove(0);
   System.out.println(obj + " is removed");
   for (String str: arrayList)
     System.out.println(str);
 }

}


 </source>
   
  
 
  



Get Synchronized List from Java ArrayList

   <source lang="java">
  

import java.util.ArrayList; import java.util.Collections; import java.util.List; public class Main {

 public static void main(String[] args) {
   ArrayList arrayList = new ArrayList();
   List list = Collections.synchronizedList(arrayList);
 }

}


 </source>
   
  
 
  



Get the size of an arraylist after and before add and remove methods

   <source lang="java">
   

import java.util.ArrayList; class ArrayListDemo {

 public static void main(String args[]) {
   ArrayList<String> al = new ArrayList<String>();
   System.out.println("Initial size of al: " + al.size());
   al.add("C");
   al.add("A");
   al.add("E");
   al.add("B");
   al.add("D");
   al.add("F");
   al.add(1, "A2");
   System.out.println("Size of al after additions: " + al.size());
   System.out.println("Contents of al: " + al);
   al.remove("F");
   al.remove(2);
   System.out.println("Size of al after deletions: " + al.size());
   System.out.println("Contents of al: " + al);
 }

}


 </source>
   
  
 
  



How to Convert an ArrayList into an array

   <source lang="java">
  

import java.util.ArrayList; public class Main {

 public static void main(String[] args) {
   ArrayList<Integer> al = new ArrayList<Integer>();
   al.add(new Integer(1));
   al.add(new Integer(2));
   al.add(new Integer(3));
   al.add(new Integer(4));
   al.add(new Integer(5));
   System.out.println("contents of al : " + al);
   Object ia[] = al.toArray(); // get array
   int sum = 0;
   for (int i = 0; i < ia.length; i++){
     sum += ((Integer) ia[i]).intValue();
   }
   System.out.println("Sum is :" + sum);
 }

}


 </source>
   
  
 
  



If an ArrayList contains a given item

   <source lang="java">
  

import java.util.ArrayList; import java.util.List; public class Main {

 public static void main(String[] args) {
   List list = new ArrayList();
   list.add("Item 1");
   list.add("Item 2");
   if (list.contains("Item 1")) {
     System.out.println("True");
   } else {
     System.out.println("False");
   }
 }

}


 </source>
   
  
 
  



Insert all elements of other Collection to Specified Index of Java ArrayList

   <source lang="java">
  

import java.util.ArrayList; import java.util.Vector; public class Main {

 public static void main(String[] args) {
   ArrayList<String> arrayList = new ArrayList<String>();
   arrayList.add("1");
   arrayList.add("2");
   arrayList.add("3");
   Vector<String> v = new Vector<String>();
   v.add("4");
   v.add("5");
   // insert all elements of Vector to ArrayList at index 1
   arrayList.addAll(1, v);
   
   for (String str: arrayList)
     System.out.println(str);
 }

} /* 1 4 5 2 3

  • /


 </source>
   
  
 
  



Iterate through a Collection using Java Iterator

   <source lang="java">
  

import java.util.ArrayList; import java.util.Iterator; public class Main {

 public static void main(String[] args) {
   ArrayList<String> aList = new ArrayList<String>();
   aList.add("1");
   aList.add("2");
   aList.add("3");
   aList.add("4");
   aList.add("5");
   Iterator itr = aList.iterator();
   // iterate through the ArrayList values using Iterator"s hasNext and next methods
   while (itr.hasNext()){
     System.out.println(itr.next());
   }
 }

}


 </source>
   
  
 
  



Iterate through elements Java ArrayList using Iterator

   <source lang="java">
  

import java.util.ArrayList; import java.util.Iterator; public class Main {

 public static void main(String[] args) {
   ArrayList<String> arrayList = new ArrayList<String>();
   arrayList.add("1");
   arrayList.add("2");
   arrayList.add("3");
   arrayList.add("4");
   arrayList.add("5");
   Iterator itr = arrayList.iterator();
   while (itr.hasNext()){
     System.out.println(itr.next());
   }
 }

}


 </source>
   
  
 
  



Iterate through elements Java ArrayList using ListIterator

   <source lang="java">
  

import java.util.ArrayList; import java.util.ListIterator; public class Main {

 public static void main(String[] args) {
   ArrayList<String> arrayList = new ArrayList<String>();
   arrayList.add("1");
   arrayList.add("2");
   arrayList.add("3");
   arrayList.add("4");
   arrayList.add("5");
   ListIterator itr = arrayList.listIterator();
   System.out.println("in forward direction");
   while (itr.hasNext()) {
     System.out.println(itr.next());
   }
   System.out.println("in backward direction");
   while (itr.hasPrevious()) {
     System.out.println(itr.previous());
   }
 }

} /*in forward direction 1 2 3 4 5 in backward direction 5 4 3 2 1

  • /


 </source>
   
  
 
  



Looping through a Collection object: while loop, iterator, and for each

   <source lang="java">
  

import java.util.ArrayList; import java.util.Iterator; public class Main {

 public static void main(String[] args) {
   ArrayList<String> list = new ArrayList<String>();
   list.add("Monday");
   list.add("Tuesdag");
   list.add("Wednesday");
   list.add("Thursday");
   list.add("Friday");
   list.add("Saturday");
   list.add("Sunday");
   Iterator<String> iterator = null;
   iterator = list.iterator();
   while (iterator.hasNext()) {
     String element = iterator.next();
     System.out.println(element);
   }
   for (iterator = list.iterator(); iterator.hasNext();) {
     String element = iterator.next();
     System.out.println(element);
   }
   for (String element : list) {
     System.out.println(element);
   }
 }

} /* Monday Tuesdag Wednesday Thursday Friday Saturday Sunday Monday Tuesdag Wednesday Thursday Friday Saturday Sunday Monday Tuesdag Wednesday Thursday Friday Saturday Sunday

  • /


 </source>
   
  
 
  



pass the actual object you want removed.

   <source lang="java">
   

import java.util.ArrayList; public class MainClass {

 public static void main(String[] a) {
   ArrayList<Employee> emps = new ArrayList<Employee>();
   Employee emp1 = new Employee("A", "G");
   Employee emp2 = new Employee("T", "A");
   Employee emp3 = new Employee("K", "J");
   emps.add(emp1);
   emps.add(emp2);
   emps.add(emp3);
   System.out.println(emps);
   emps.remove(emp2);
   System.out.println(emps);
 }

} class Address { } class Employee {

 private String lastName;
 private String firstName;
 private Double salary;
 public Address address;
 public Employee(String lastName, String firstName) {
   this.lastName = lastName;
   this.firstName = firstName;
   this.address = new Address();
 }
 public String getLastName() {
   return this.lastName;
 }
 public void setLastName(String lastName) {
   this.lastName = lastName;
 }
 public String getFirstName() {
   return this.firstName;
 }
 public void setFirstName(String firstName) {
   this.firstName = firstName;
 }
 public double getSalary() {
   return this.salary;
 }
 public void setSalary(double salary) {
   this.salary = salary;
 }

}


 </source>
   
  
 
  



Perform Binary Search on Java ArrayList

   <source lang="java">
  

import java.util.ArrayList; import java.util.Collections; public class Main {

 public static void main(String[] args) {
   ArrayList<String> arrayList = new ArrayList<String>();
   arrayList.add("1");
   arrayList.add("4");
   arrayList.add("2");
   arrayList.add("5");
   arrayList.add("3");
   Collections.sort(arrayList);
   System.out.println("Sorted ArrayList contains : " + arrayList);
   int index = Collections.binarySearch(arrayList, "4");
   System.out.println("Element found at : " + index);
 }

}


 </source>
   
  
 
  



Pre-generics example that uses a collection.

   <source lang="java">
   

import java.util.ArrayList; import java.util.Iterator; class OldStyle {

 public static void main(String args[]) {
   ArrayList list = new ArrayList();
   list.add("one");
   list.add("two");
   list.add("three");
   list.add("four");
   Iterator itr = list.iterator();
   while (itr.hasNext()) {
     String str = (String) itr.next(); // explicit cast needed here.
     System.out.println(str + " is " + str.length() + " chars long.");
   }
 }

}


 </source>
   
  
 
  



Remove all elements from Java ArrayList

   <source lang="java">
  

import java.util.ArrayList; public class Main {

 public static void main(String[] args) {
   ArrayList<String> arrayList = new ArrayList<String>();
   arrayList.add("1");
   arrayList.add("2");
   arrayList.add("3");
   System.out.println(arrayList.size());
   arrayList.clear();
   System.out.println(arrayList.size());
 }

}


 </source>
   
  
 
  



Remove an element from ArrayList using Java ListIterator

   <source lang="java">
  

import java.util.ArrayList; import java.util.ListIterator; public class Main {

 public static void main(String[] args) {
   ArrayList<String> aList = new ArrayList<String>();
   aList.add("1");
   aList.add("2");
   aList.add("3");
   aList.add("4");
   aList.add("5");
   // Get an object of ListIterator using listIterator() method
   ListIterator listIterator = aList.listIterator();
   listIterator.next();
   listIterator.next();
   // remove element returned by last next method
   listIterator.remove();
   for (String str: aList){
     System.out.println(str);
   }
 }

}


 </source>
   
  
 
  



Remove an element from Collection using Java Iterator

   <source lang="java">
  

import java.util.ArrayList; import java.util.Iterator; public class Main {

 public static void main(String[] args) {
   ArrayList<String> aList = new ArrayList<String>();
   aList.add("1");
   aList.add("2");
   aList.add("3");
   aList.add("4");
   aList.add("5");
   for (String str: aList) {
     System.out.println(str);
   }
   Iterator itr = aList.iterator();
   // remove 2 from ArrayList using Iterator"s remove method.
   String strElement = "";
   while (itr.hasNext()) {
     strElement = (String) itr.next();
     if (strElement.equals("2")) {
       itr.remove();
       break;
     }
   }
   for (String str: aList) {
     System.out.println(str);
   }
 }

}


 </source>
   
  
 
  



Remove an element from specified index of Java ArrayList

   <source lang="java">
  

import java.util.ArrayList; public class Main {

 public static void main(String[] args) {
   ArrayList<String> arrayList = new ArrayList<String>();
   arrayList.add("1");
   arrayList.add("2");
   arrayList.add("3");
   Object obj = arrayList.remove(1);
   System.out.println(obj + " is removed from ArrayList");
   for (String str: arrayList)
     System.out.println(str);
 }

}


 </source>
   
  
 
  



Remove duplicate items from an ArrayList

   <source lang="java">
  

import java.util.ArrayList; import java.util.HashSet; import java.util.List; public class Main {

 public static void main(String[] argv) {
   List<String> arrayList1 = new ArrayList<String>();
   arrayList1.add("A");
   arrayList1.add("A");
   arrayList1.add("B");
   arrayList1.add("B");
   arrayList1.add("B");
   arrayList1.add("C");
   HashSet<String> hashSet = new HashSet<String>(arrayList1);
   List<String> arrayList2 = new ArrayList<String>(hashSet);
   for (Object item : arrayList2)
     System.out.println(item);
 }

} /* A B C

  • /


 </source>
   
  
 
  



Replace All Elements Of Java ArrayList

   <source lang="java">
  

import java.util.ArrayList; import java.util.Collections; public class Main {

 public static void main(String[] args) {
   ArrayList<String> arrayList = new ArrayList<String>();
   arrayList.add("A");
   arrayList.add("B");
   arrayList.add("D");
   System.out.println(arrayList);
   Collections.fill(arrayList, "REPLACED");
   System.out.println(arrayList);
 }

} /* [A, B, D] [REPLACED, REPLACED, REPLACED]

  • /


 </source>
   
  
 
  



Replace all occurrences of specified element of Java ArrayList

   <source lang="java">
  

import java.util.ArrayList; import java.util.Collections; public class Main {

 public static void main(String[] args) {
   ArrayList<String> arrayList = new ArrayList<String>();
   arrayList.add("A");
   arrayList.add("B");
   arrayList.add("A");
   arrayList.add("C");
   arrayList.add("D");
   System.out.println(arrayList);
   Collections.replaceAll(arrayList, "A", "Replace All");
   System.out.println(arrayList);
 }

} /* [A, B, A, C, D] [Replace All, B, Replace All, C, D]

  • /


 </source>
   
  
 
  



Replace an element at specified index of Java ArrayList

   <source lang="java">
  

import java.util.ArrayList; public class Main {

 public static void main(String[] args) {
   ArrayList<String> arrayList = new ArrayList<String>();
   arrayList.add("1");
   arrayList.add("2");
   arrayList.add("3");
   arrayList.set(1, "REPLACED ELEMENT");
   for (String str: arrayList){
     System.out.println(str);
   }
 }

} /* 1 REPLACED ELEMENT 3

  • /


 </source>
   
  
 
  



Replace an element from ArrayList using Java ListIterator

   <source lang="java">
  

import java.util.ArrayList; import java.util.ListIterator; public class Main {

 public static void main(String[] args) {
   ArrayList<String> aList = new ArrayList<String>();
   aList.add("1");
   aList.add("2");
   aList.add("3");
   aList.add("4");
   aList.add("5");
   ListIterator<String> listIterator = aList.listIterator();
   listIterator.next();
   listIterator.set("100");
   for (String str : aList) {
     System.out.println(str);
   }
 }

}


 </source>
   
  
 
  



Reverse order of all elements of Java ArrayList

   <source lang="java">
  

import java.util.ArrayList; import java.util.Collections; public class Main {

 public static void main(String[] args) {
   ArrayList<String> arrayList = new ArrayList<String>();
   arrayList.add("A");
   arrayList.add("B");
   arrayList.add("C");
   arrayList.add("D");
   arrayList.add("E");
   System.out.println(arrayList);
   Collections.reverse(arrayList);
   System.out.println(arrayList);
 }

}


 </source>
   
  
 
  



Rotate elements of a collection

   <source lang="java">
  

import java.util.ArrayList; import java.util.Arrays; import java.util.Collections; import java.util.List; public class Main {

 public static void main(String[] args) {
   List numbers = new ArrayList();
   for (int i = 0; i < 25; i++) {
     numbers.add(i);
   }
   System.out.println(Arrays.toString(numbers.toArray()));
   Collections.rotate(numbers, 10);
   System.out.println(Arrays.toString(numbers.toArray()));
 }

}



 </source>
   
  
 
  



Search an element of Java ArrayList

   <source lang="java">
  

import java.util.ArrayList; public class Main {

 public static void main(String[] args) {
   ArrayList<String> arrayList = new ArrayList<String>();
   arrayList.add("2");
   arrayList.add("2");
   arrayList.add("3");
   arrayList.add("4");
   arrayList.add("5");
   arrayList.add("1");
   arrayList.add("2");
   System.out.println(arrayList.contains("2"));
   int index = arrayList.indexOf("4");
   if (index == -1)
     System.out.println("not contain 4");
   else
     System.out.println("4 at index :" + index);
   int lastIndex = arrayList.lastIndexOf("1");
   if (lastIndex == -1)
     System.out.println("not contain 1");
   else
     System.out.println("Last index :"+ lastIndex);
 }

} /*true 4 at index :3 Last index :5

  • /


 </source>
   
  
 
  



Search collection element

   <source lang="java">
  

import java.text.DateFormatSymbols; import java.util.Collections; import java.util.LinkedList; import java.util.List; public class Main {

 public static void main(String[] args) {
   List list = new LinkedList();
   DateFormatSymbols dfs = new DateFormatSymbols();
   String[] months = dfs.getMonths();
   for (int i = 0; i < months.length; i++) {
     String month = months[i];
     list.add(month);
   }
   Collections.sort(list);
   System.out.println("Month Names = " + list);
   int index = Collections.binarySearch(list, "October");
   if (index > 0) {
     System.out.println("Found at index = " + index);
     String month = (String) list.get(index);
     System.out.println("Month = " + month);
   }
 }

}


 </source>
   
  
 
  



shows the modern, generic form of collection classes

   <source lang="java">
   

import java.util.ArrayList; import java.util.Iterator; class NewStyle {

 public static void main(String args[]) {
   ArrayList<String> list = new ArrayList<String>();
   list.add("one");
   list.add("two");
   list.add("three");
   list.add("four");
   Iterator<String> itr = list.iterator();
   while (itr.hasNext()) {
     String str = itr.next(); // no cast needed
     System.out.println(str + " is " + str.length() + " chars long.");
   }
 }

}


 </source>
   
  
 
  



Shuffle elements of Java ArrayList

   <source lang="java">
  

import java.util.ArrayList; import java.util.Collections; public class Main {

 public static void main(String[] args) {
   ArrayList<String> arrayList = new ArrayList<String>();
   arrayList.add("A");
   arrayList.add("B");
   arrayList.add("C");
   arrayList.add("D");
   arrayList.add("E");
   System.out.println(arrayList);
   Collections.shuffle(arrayList);
   System.out.println(arrayList);
 }

} /* [A, B, C, D, E] [E, D, A, C, B]

  • /


 </source>
   
  
 
  



Sort elements of Java ArrayList

   <source lang="java">
  

import java.util.ArrayList; import java.util.Collections; public class Main {

 public static void main(String[] args) {
   ArrayList<String> arrayList = new ArrayList<String>();
   arrayList.add("1");
   arrayList.add("3");
   arrayList.add("5");
   arrayList.add("2");
   arrayList.add("4");
   Collections.sort(arrayList);
   for (String str: arrayList)
     System.out.println(str);
 }

} /* 1 2 3 4 5

  • /


 </source>
   
  
 
  



Sort items of an ArrayList

   <source lang="java">
  

import java.util.ArrayList; import java.util.Arrays; import java.util.Collections; import java.util.List; public class Main {

 public static void main(String[] args) {
   List<String> colours = new ArrayList<String>();
   colours.add("red");
   colours.add("green");
   colours.add("blue");
   colours.add("yellow");
   colours.add("cyan");
   colours.add("white");
   colours.add("black");
   Collections.sort(colours);
   System.out.println(Arrays.toString(colours.toArray()));
   Collections.sort(colours, Collections.reverseOrder());
   System.out.println(Arrays.toString(colours.toArray()));
 }

}


 </source>
   
  
 
  



Sort Java ArrayList in descending order using comparator

   <source lang="java">
  

import java.util.ArrayList; import java.util.Collections; import java.util.ruparator; public class Main {

 public static void main(String[] args) {
   ArrayList<String> arrayList = new ArrayList<String>();
   arrayList.add("A");
   arrayList.add("B");
   arrayList.add("C");
   arrayList.add("D");
   arrayList.add("E");
   
   Comparator comparator = Collections.reverseOrder();
   System.out.println(arrayList);
   Collections.sort(arrayList, comparator);
   System.out.println(arrayList);
 }

}


 </source>
   
  
 
  



Store user-defined objects in arraylist

   <source lang="java">
   

import java.util.ArrayList; public class MainClass {

 public static void main(String[] a) {
   ArrayList<Employee> emps = new ArrayList<Employee>();
   emps.add(new Employee("A", "G"));
   emps.add(new Employee("T", "A"));
   emps.add(new Employee("K", "J"));
   System.out.println(emps);
   Employee e = emps.get(1);
   e.setLastName("new");
   System.out.println(emps);
 }

} class Address { } class Employee {

 private String lastName;
 private String firstName;
 private Double salary;
 public Address address;
 public Employee(String lastName, String firstName) {
   this.lastName = lastName;
   this.firstName = firstName;
   this.address = new Address();
 }
 public String getLastName() {
   return this.lastName;
 }
 public void setLastName(String lastName) {
   this.lastName = lastName;
 }
 public String getFirstName() {
   return this.firstName;
 }
 public void setFirstName(String firstName) {
   this.firstName = firstName;
 }
 public double getSalary() {
   return this.salary;
 }
 public void setSalary(double salary) {
   this.salary = salary;
 }

}


 </source>
   
  
 
  



Swap elements of Java ArrayList

   <source lang="java">
  

import java.util.ArrayList; import java.util.Collections; public class Main {

 public static void main(String[] args) {
   ArrayList<String> arrayList = new ArrayList<String>();
   arrayList.add("A");
   arrayList.add("B");
   arrayList.add("C");
   arrayList.add("D");
   arrayList.add("E");
   System.out.println(arrayList);
   Collections.swap(arrayList, 0, 4);
   System.out.println(arrayList);
 }

} /* [A, B, C, D, E] [E, B, C, D, A]

  • /


 </source>
   
  
 
  



Traverse through ArrayList in forward direction using Java ListIterator

   <source lang="java">
  
      

import java.util.ArrayList; import java.util.ListIterator; public class Main {

 public static void main(String[] args) {
   ArrayList<String> aList = new ArrayList<String>();
   aList.add("1");
   aList.add("2");
   aList.add("3");
   aList.add("4");
   aList.add("5");
   ListIterator listIterator = aList.listIterator();
   while (listIterator.hasNext()){
     System.out.println(listIterator.next());
   }
 }

}


 </source>
   
  
 
  



Traverse through ArrayList in reverse direction using Java ListIterator

   <source lang="java">
  

import java.util.ArrayList; import java.util.ListIterator; public class Main {

 public static void main(String[] args) {
   ArrayList<String> aList = new ArrayList<String>();
   aList.add("1");
   aList.add("2");
   aList.add("3");
   aList.add("4");
   aList.add("5");
   ListIterator<String> listIterator = aList.listIterator();
   while (listIterator.hasNext()){
     System.out.println(listIterator.next());
   }
   while (listIterator.hasPrevious()){
     System.out.println(listIterator.previous());
   }
 }

}


 </source>
   
  
 
  



Use set method to change the value in an array list

   <source lang="java">
   

import java.util.ArrayList; public class MainClass {

 public static void main(String[] a) {
   ArrayList<String> nums = new ArrayList<String>();
   nums.clear();
   nums.add("One");
   nums.add("Two");
   nums.add("Three");
   System.out.println(nums);
   nums.set(0, "Uno");
   nums.set(1, "Dos");
   nums.set(2, "Tres");
   System.out.println(nums);
 }

}


 </source>
   
  
 
  



Use the Iterator returned from ArrayList to loop through an array list

   <source lang="java">
   

import java.util.ArrayList; import java.util.Iterator; public class MainClass {

 public static void main(String[] a) {
   ArrayList<String> nums = new ArrayList<String>();
   nums.add("O");
   nums.add("Two");
   nums.add("Three");
   nums.add("Four");
   String s;
   Iterator e = nums.iterator();
   while (e.hasNext()) {
     s = (String) e.next();
     System.out.println(s);
   }
 }

}


 </source>