Java/3D/Collision

Материал из Java эксперт
Перейти к: навигация, поиск

Intersect Test

/*
 * @(#)IntersectTest.java 1.10 02/10/21 13:48:59
 * 
 * Copyright (c) 1996-2002 Sun Microsystems, Inc. All Rights Reserved.
 * 
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions are met: -
 * Redistributions of source code must retain the above copyright notice, this
 * list of conditions and the following disclaimer. - Redistribution in binary
 * form must reproduce the above copyright notice, this list of conditions and
 * the following disclaimer in the documentation and/or other materials provided
 * with the distribution.
 * 
 * Neither the name of Sun Microsystems, Inc. or the names of contributors may
 * be used to endorse or promote products derived from this software without
 * specific prior written permission.
 * 
 * This software is provided "AS IS," without a warranty of any kind. ALL
 * EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES, INCLUDING ANY
 * IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR
 * NON-INFRINGEMENT, ARE HEREBY EXCLUDED. SUN AND ITS LICENSORS SHALL NOT BE
 * LIABLE FOR ANY DAMAGES SUFFERED BY LICENSEE AS A RESULT OF USING, MODIFYING
 * OR DISTRIBUTING THE SOFTWARE OR ITS DERIVATIVES. IN NO EVENT WILL SUN OR ITS
 * LICENSORS BE LIABLE FOR ANY LOST REVENUE, PROFIT OR DATA, OR FOR DIRECT,
 * INDIRECT, SPECIAL, CONSEQUENTIAL, INCIDENTAL OR PUNITIVE DAMAGES, HOWEVER
 * CAUSED AND REGARDLESS OF THE THEORY OF LIABILITY, ARISING OUT OF THE USE OF
 * OR INABILITY TO USE SOFTWARE, EVEN IF SUN HAS BEEN ADVISED OF THE POSSIBILITY
 * OF SUCH DAMAGES.
 * 
 * You acknowledge that Software is not designed,licensed or intended for use in
 * the design, construction, operation or maintenance of any nuclear facility.
 */
import java.applet.Applet;
import java.awt.AWTEvent;
import java.awt.BorderLayout;
import java.awt.GraphicsConfiguration;
import java.awt.event.MouseEvent;
import java.util.Enumeration;
import javax.media.j3d.AmbientLight;
import javax.media.j3d.Appearance;
import javax.media.j3d.Behavior;
import javax.media.j3d.BoundingSphere;
import javax.media.j3d.BranchGroup;
import javax.media.j3d.Canvas3D;
import javax.media.j3d.DirectionalLight;
import javax.media.j3d.GeometryArray;
import javax.media.j3d.Group;
import javax.media.j3d.LineArray;
import javax.media.j3d.Material;
import javax.media.j3d.Node;
import javax.media.j3d.PointArray;
import javax.media.j3d.PolygonAttributes;
import javax.media.j3d.QuadArray;
import javax.media.j3d.Shape3D;
import javax.media.j3d.Transform3D;
import javax.media.j3d.TransformGroup;
import javax.media.j3d.TriangleArray;
import javax.media.j3d.View;
import javax.media.j3d.WakeupCriterion;
import javax.media.j3d.WakeupOnAWTEvent;
import javax.vecmath.Color3f;
import javax.vecmath.Color4f;
import javax.vecmath.Point3d;
import javax.vecmath.Point3f;
import javax.vecmath.Vector3d;
import javax.vecmath.Vector3f;
import com.sun.j3d.utils.applet.MainFrame;
import com.sun.j3d.utils.behaviors.keyboard.KeyNavigatorBehavior;
import com.sun.j3d.utils.geometry.Sphere;
import com.sun.j3d.utils.picking.PickCanvas;
import com.sun.j3d.utils.picking.PickIntersection;
import com.sun.j3d.utils.picking.PickResult;
import com.sun.j3d.utils.picking.PickTool;
import com.sun.j3d.utils.universe.SimpleUniverse;
public class IntersectTest extends Applet {
  BoundingSphere bounds = new BoundingSphere(new Point3d(0.0, 0.0, 0.0),
      1000.0);
  private SimpleUniverse u = null;
  public BranchGroup createSceneGraph() {
    // Create the root of the branch graph
    BranchGroup objRoot = new BranchGroup();
    // Set up the ambient light
    Color3f ambientColor = new Color3f(0.1f, 0.1f, 0.1f);
    AmbientLight ambientLightNode = new AmbientLight(ambientColor);
    ambientLightNode.setInfluencingBounds(bounds);
    objRoot.addChild(ambientLightNode);
    // Set up the directional lights
    Color3f light1Color = new Color3f(1.0f, 1.0f, 0.9f);
    Vector3f light1Direction = new Vector3f(4.0f, -7.0f, -12.0f);
    Color3f light2Color = new Color3f(0.3f, 0.3f, 0.4f);
    Vector3f light2Direction = new Vector3f(-6.0f, -2.0f, -1.0f);
    DirectionalLight light1 = new DirectionalLight(light1Color,
        light1Direction);
    light1.setInfluencingBounds(bounds);
    objRoot.addChild(light1);
    DirectionalLight light2 = new DirectionalLight(light2Color,
        light2Direction);
    light2.setInfluencingBounds(bounds);
    objRoot.addChild(light2);
    Transform3D t3 = new Transform3D();
    // Shapes
    for (int x = 0; x < 3; x++) {
      for (int y = 0; y < 3; y++) {
        for (int z = 0; z < 3; z++) {
          t3.setTranslation(new Vector3d(-4 + x * 4.0, -4 + y * 4.0,
              -20 - z * 4.0));
          TransformGroup objTrans = new TransformGroup(t3);
          objRoot.addChild(objTrans);
          // Create a simple shape leaf node, add it to the scene
          // graph.
          GeometryArray geom = null;
          if (((x + y + z) % 2) == 0) {
            geom = new RandomColorCube();
          } else {
            geom = new RandomColorTetrahedron();
          }
          Shape3D shape = new Shape3D(geom);
          // use the utility method to set the capabilities
          PickTool.setCapabilities(shape, PickTool.INTERSECT_FULL);
          objTrans.addChild(shape);
        }
      }
    }
    // Lines
    Point3f[] verts = { new Point3f(-2.0f, 0.0f, 0.0f),
        new Point3f(2.0f, 0.0f, 0.0f) };
    Color3f grey = new Color3f(0.7f, 0.7f, 0.7f);
    Color3f[] colors = { grey, grey };
    for (int y = 0; y < 5; y++) {
      for (int z = 0; z < 5; z++) {
        t3.setTranslation(new Vector3d(7.0, -4 + y * 2.0, -20.0 - z
            * 2.0));
        TransformGroup objTrans = new TransformGroup(t3);
        objRoot.addChild(objTrans);
        LineArray la = new LineArray(verts.length,
            LineArray.COORDINATES | LineArray.COLOR_3);
        la.setCoordinates(0, verts);
        la.setColors(0, colors);
        Shape3D shape = new Shape3D();
        shape.setGeometry(la);
        // use the utility method to set the capabilities
        PickTool.setCapabilities(shape, PickTool.INTERSECT_FULL);
        objTrans.addChild(shape);
      }
    }
    // Points
    for (double x = -2.0; x <= 2.0; x += 1.0) {
      for (double y = -2.0; y <= 2.0; y += 1.0) {
        for (double z = -2.0; z <= 2.0; z += 1.0) {
          t3.setTranslation(new Vector3d(-10.0 + 2.0 * x,
              0.0 + 2.0 * y, -20.0 + 2.0 * z));
          TransformGroup objTrans = new TransformGroup(t3);
          objRoot.addChild(objTrans);
          PointArray pa = new PointArray(1, PointArray.COORDINATES
              | PointArray.COLOR_3);
          pa.setCoordinate(0, new Point3d(0.0, 0.0, 0.0));
          pa.setColor(0, grey);
          Shape3D shape = new Shape3D();
          shape.setGeometry(pa);
          // use the utility method to set the capabilities
          PickTool.setCapabilities(shape, PickTool.INTERSECT_FULL);
          objTrans.addChild(shape);
        }
      }
    }
    return objRoot;
  }
  public IntersectTest() {
  }
  public void init() {
    setLayout(new BorderLayout());
    GraphicsConfiguration config = SimpleUniverse
        .getPreferredConfiguration();
    Canvas3D c = new Canvas3D(config);
    add("Center", c);
    // Create a simple scene and attach it to the virtual universe
    BranchGroup scene = createSceneGraph();
    u = new SimpleUniverse(c);
    // Add picking behavior
    IntersectInfoBehavior behavior = new IntersectInfoBehavior(c, scene,
        0.05f);
    behavior.setSchedulingBounds(bounds);
    scene.addChild(behavior);
    TransformGroup vpTrans = u.getViewingPlatform()
        .getViewPlatformTransform();
    KeyNavigatorBehavior keybehavior = new KeyNavigatorBehavior(vpTrans);
    keybehavior.setSchedulingBounds(bounds);
    scene.addChild(keybehavior);
    scene.setCapability(Group.ALLOW_CHILDREN_EXTEND);
    scene.rupile();
    u.addBranchGraph(scene);
    View view = u.getViewer().getView();
    view.setBackClipDistance(100000);
  }
  public void destroy() {
    u.cleanup();
  }
  //
  // The following allows IntersectTest to be run as an application
  // as well as an applet
  //
  public static void main(String[] args) {
    String s = "\n\nIntersectTest:\n-----------\n";
    s += "Pick with the mouse over the primitives\n";
    s += "- A sphere will be placed to indicate the picked point.\n";
    s += "If color information is available, the sphere will change color to reflect\n";
    s += "the interpolated color.\n";
    s += "- Other spheres will be placed to show the vertices of the selected polygon\n";
    s += "- Information will be displayed about the picking operation\n\n\n";
    System.out.println(s);
    new MainFrame(new IntersectTest(), 640, 640);
  }
}
class RandomColorTetrahedron extends TriangleArray {
  RandomColorTetrahedron() {
    super(12, GeometryArray.COORDINATES | GeometryArray.COLOR_3);
    Point3f verts[] = new Point3f[4];
    Color3f colors[] = new Color3f[4];
    verts[0] = new Point3f(0.5f, 0.5f, 0.5f);
    verts[1] = new Point3f(0.5f, -0.5f, -0.5f);
    verts[2] = new Point3f(-0.5f, -0.5f, 0.5f);
    verts[3] = new Point3f(-0.5f, 0.5f, -0.5f);
    colors[0] = new Color3f(1.0f, 0.0f, 0.0f);
    colors[1] = new Color3f(0.0f, 1.0f, 0.0f);
    colors[2] = new Color3f(0.0f, 0.0f, 1.0f);
    Point3f pnts[] = new Point3f[12];
    Color3f clrs[] = new Color3f[12];
    pnts[0] = verts[2];
    clrs[0] = colors[(int) (Math.random() * 3.0)];
    pnts[1] = verts[1];
    clrs[1] = colors[(int) (Math.random() * 3.0)];
    pnts[2] = verts[0];
    clrs[2] = colors[(int) (Math.random() * 3.0)];
    pnts[3] = verts[3];
    clrs[3] = colors[(int) (Math.random() * 3.0)];
    pnts[4] = verts[2];
    clrs[4] = colors[(int) (Math.random() * 3.0)];
    pnts[5] = verts[0];
    clrs[5] = colors[(int) (Math.random() * 3.0)];
    pnts[6] = verts[1];
    clrs[6] = colors[(int) (Math.random() * 3.0)];
    pnts[7] = verts[2];
    clrs[7] = colors[(int) (Math.random() * 3.0)];
    pnts[8] = verts[3];
    clrs[8] = colors[(int) (Math.random() * 3.0)];
    pnts[9] = verts[1];
    clrs[9] = colors[(int) (Math.random() * 3.0)];
    pnts[10] = verts[3];
    clrs[10] = colors[(int) (Math.random() * 3.0)];
    pnts[11] = verts[0];
    clrs[11] = colors[(int) (Math.random() * 3.0)];
    setCoordinates(0, pnts);
    setColors(0, clrs);
  }
}
class RandomColorCube extends QuadArray {
  RandomColorCube() {
    super(24, GeometryArray.COORDINATES | GeometryArray.COLOR_3);
    Point3f verts[] = new Point3f[8];
    Color3f colors[] = new Color3f[3];
    verts[0] = new Point3f(0.5f, 0.5f, 0.5f);
    verts[1] = new Point3f(-0.5f, 0.5f, 0.5f);
    verts[2] = new Point3f(-0.5f, -0.5f, 0.5f);
    verts[3] = new Point3f(0.5f, -0.5f, 0.5f);
    verts[4] = new Point3f(0.5f, 0.5f, -0.5f);
    verts[5] = new Point3f(-0.5f, 0.5f, -0.5f);
    verts[6] = new Point3f(-0.5f, -0.5f, -0.5f);
    verts[7] = new Point3f(0.5f, -0.5f, -0.5f);
    colors[0] = new Color3f(1.0f, 0.0f, 0.0f);
    colors[1] = new Color3f(0.0f, 1.0f, 0.0f);
    colors[2] = new Color3f(0.0f, 0.0f, 1.0f);
    Point3f pnts[] = new Point3f[24];
    Color3f clrs[] = new Color3f[24];
    pnts[0] = verts[0];
    clrs[0] = colors[(int) (Math.random() * 3.0)];
    pnts[1] = verts[3];
    clrs[1] = colors[(int) (Math.random() * 3.0)];
    pnts[2] = verts[7];
    clrs[2] = colors[(int) (Math.random() * 3.0)];
    pnts[3] = verts[4];
    clrs[3] = colors[(int) (Math.random() * 3.0)];
    pnts[4] = verts[1];
    clrs[4] = colors[(int) (Math.random() * 3.0)];
    pnts[5] = verts[5];
    clrs[5] = colors[(int) (Math.random() * 3.0)];
    pnts[6] = verts[6];
    clrs[6] = colors[(int) (Math.random() * 3.0)];
    pnts[7] = verts[2];
    clrs[7] = colors[(int) (Math.random() * 3.0)];
    pnts[8] = verts[0];
    clrs[8] = colors[(int) (Math.random() * 3.0)];
    pnts[9] = verts[4];
    clrs[9] = colors[(int) (Math.random() * 3.0)];
    pnts[10] = verts[5];
    clrs[10] = colors[(int) (Math.random() * 3.0)];
    pnts[11] = verts[1];
    clrs[11] = colors[(int) (Math.random() * 3.0)];
    pnts[12] = verts[3];
    clrs[12] = colors[(int) (Math.random() * 3.0)];
    pnts[13] = verts[2];
    clrs[13] = colors[(int) (Math.random() * 3.0)];
    pnts[14] = verts[6];
    clrs[14] = colors[(int) (Math.random() * 3.0)];
    pnts[15] = verts[7];
    clrs[15] = colors[(int) (Math.random() * 3.0)];
    pnts[16] = verts[0];
    clrs[16] = colors[(int) (Math.random() * 3.0)];
    pnts[17] = verts[1];
    clrs[17] = colors[(int) (Math.random() * 3.0)];
    pnts[18] = verts[2];
    clrs[18] = colors[(int) (Math.random() * 3.0)];
    pnts[19] = verts[3];
    clrs[19] = colors[(int) (Math.random() * 3.0)];
    pnts[20] = verts[7];
    clrs[20] = colors[(int) (Math.random() * 3.0)];
    pnts[21] = verts[6];
    clrs[21] = colors[(int) (Math.random() * 3.0)];
    pnts[22] = verts[5];
    clrs[22] = colors[(int) (Math.random() * 3.0)];
    pnts[23] = verts[4];
    clrs[23] = colors[(int) (Math.random() * 3.0)];
    setCoordinates(0, pnts);
    setColors(0, clrs);
  }
}
/**
 * Class: IntersectInfoBehavior
 * 
 * Description: Used to respond to mouse pick and drag events in the 3D window.
 * Displays information about the pick.
 * 
 * Version: 1.0
 *  
 */
class IntersectInfoBehavior extends Behavior {
  float size;
  PickCanvas pickCanvas;
  PickResult[] pickResult;
  Appearance oldlook, redlookwf, redlook, greenlook, bluelook;
  Node oldNode = null;
  GeometryArray oldGeom = null;
  Color3f redColor = new Color3f(1.0f, 0.0f, 0.0f);
  TransformGroup[] sphTrans = new TransformGroup[6];
  Sphere[] sph = new Sphere[6];
  Transform3D spht3 = new Transform3D();
  public IntersectInfoBehavior(Canvas3D canvas3D, BranchGroup branchGroup,
      float size) {
    pickCanvas = new PickCanvas(canvas3D, branchGroup);
    pickCanvas.setTolerance(5.0f);
    pickCanvas.setMode(PickCanvas.GEOMETRY_INTERSECT_INFO);
    this.size = size;
    // Create an Appearance.
    redlook = new Appearance();
    Color3f objColor = new Color3f(0.5f, 0.0f, 0.0f);
    Color3f black = new Color3f(0.0f, 0.0f, 0.0f);
    Color3f white = new Color3f(1.0f, 1.0f, 1.0f);
    redlook.setMaterial(new Material(objColor, black, objColor, white,
        50.0f));
    redlook.setCapability(Appearance.ALLOW_MATERIAL_WRITE);
    redlookwf = new Appearance();
    redlookwf.setMaterial(new Material(objColor, black, objColor, white,
        50.0f));
    PolygonAttributes pa = new PolygonAttributes();
    pa.setPolygonMode(pa.POLYGON_LINE);
    pa.setCullFace(pa.CULL_NONE);
    redlookwf.setPolygonAttributes(pa);
    oldlook = new Appearance();
    objColor = new Color3f(1.0f, 1.0f, 1.0f);
    oldlook.setMaterial(new Material(objColor, black, objColor, white,
        50.0f));
    greenlook = new Appearance();
    objColor = new Color3f(0.0f, 0.8f, 0.0f);
    greenlook.setMaterial(new Material(objColor, black, objColor, white,
        50.0f));
    bluelook = new Appearance();
    objColor = new Color3f(0.0f, 0.0f, 0.8f);
    bluelook.setMaterial(new Material(objColor, black, objColor, white,
        50.0f));
    for (int i = 0; i < 6; i++) {
      switch (i) {
      case 0:
        sph[i] = new Sphere(size * 1.15f, redlook);
        break;
      case 1:
        sph[i] = new Sphere(size * 1.1f, greenlook);
        break;
      default:
        sph[i] = new Sphere(size, bluelook);
        break;
      }
      sph[i].setPickable(false);
      sphTrans[i] = new TransformGroup();
      sphTrans[i].setCapability(TransformGroup.ALLOW_TRANSFORM_READ);
      sphTrans[i].setCapability(TransformGroup.ALLOW_TRANSFORM_WRITE);
      // Add sphere, transform
      branchGroup.addChild(sphTrans[i]);
      sphTrans[i].addChild(sph[i]);
    }
  }
  public void initialize() {
    wakeupOn(new WakeupOnAWTEvent(MouseEvent.MOUSE_PRESSED));
  }
  public void processStimulus(Enumeration criteria) {
    WakeupCriterion wakeup;
    AWTEvent[] event;
    int eventId;
    while (criteria.hasMoreElements()) {
      wakeup = (WakeupCriterion) criteria.nextElement();
      if (wakeup instanceof WakeupOnAWTEvent) {
        event = ((WakeupOnAWTEvent) wakeup).getAWTEvent();
        for (int i = 0; i < event.length; i++) {
          eventId = event[i].getID();
          if (eventId == MouseEvent.MOUSE_PRESSED) {
            int x = ((MouseEvent) event[i]).getX();
            int y = ((MouseEvent) event[i]).getY();
            pickCanvas.setShapeLocation(x, y);
            Point3d eyePos = pickCanvas.getStartPosition();
            pickResult = pickCanvas.pickAllSorted();
            // Use this to do picking benchmarks
            /*
             * long start = System.currentTimeMillis(); for (int
             * l=0;l <3;l++) { if (l == 0) System.out.print
             * ("BOUNDS: "); if (l == 1) System.out.print
             * ("GEOMETRY: "); if (l == 2) System.out.print
             * ("GEOMETRY_INTERSECT_INFO: ");
             * 
             * for (int k=0;k <1000;k++) { if (l == 0) {
             * pickCanvas.setMode(PickTool.BOUNDS); pickResult =
             * pickCanvas.pickAllSorted(); } if (l == 1) {
             * pickCanvas.setMode(PickTool.GEOMETRY); pickResult =
             * pickCanvas.pickAllSorted(); } if (l == 2) {
             * pickCanvas.setMode(PickTool.GEOMETRY_INTERSECT_INFO);
             * pickResult = pickCanvas.pickAllSorted(); } } long
             * delta = System.currentTimeMillis() - start;
             * System.out.println ("\t"+delta+" ms / 1000 picks"); }
             */
            if (pickResult != null) {
              // Get closest intersection results
              PickIntersection pi = pickResult[0]
                  .getClosestIntersection(eyePos);
              GeometryArray curGeomArray = pi.getGeometryArray();
              // Position sphere at intersection point
              Vector3d v = new Vector3d();
              Point3d intPt = pi.getPointCoordinatesVW();
              v.set(intPt);
              spht3.setTranslation(v);
              sphTrans[0].setTransform(spht3);
              // Position sphere at closest vertex
              Point3d closestVert = pi
                  .getClosestVertexCoordinatesVW();
              v.set(closestVert);
              spht3.setTranslation(v);
              sphTrans[1].setTransform(spht3);
              Point3d[] ptw = pi.getPrimitiveCoordinatesVW();
              Point3d[] pt = pi.getPrimitiveCoordinates();
              int[] coordidx = pi.getPrimitiveCoordinateIndices();
              Point3d ptcoord = new Point3d();
              for (int k = 0; k < pt.length; k++) {
                v.set(ptw[k]);
                spht3.setTranslation(v);
                sphTrans[k + 2].setTransform(spht3);
              }
              // Get interpolated color (if available)
              Color4f iColor4 = null;
              Color3f iColor = null;
              Vector3f iNormal = null;
              if (curGeomArray != null) {
                int vf = curGeomArray.getVertexFormat();
                if (((vf & (GeometryArray.COLOR_3 | GeometryArray.COLOR_4)) != 0)
                    && (null != (iColor4 = pi
                        .getPointColor()))) {
                  iColor = new Color3f(iColor4.x, iColor4.y,
                      iColor4.z);
                  // Change the point"s color
                  redlook.setMaterial(new Material(iColor,
                      new Color3f(0.0f, 0.0f, 0.0f),
                      iColor, new Color3f(1.0f, 1.0f,
                          1.0f), 50.0f));
                }
                if (((vf & GeometryArray.NORMALS) != 0)
                    && (null != (iNormal = pi
                        .getPointNormal()))) {
                  System.out.println("Interpolated normal: "
                      + iNormal);
                }
              }
              System.out.println("=============");
              System.out
                  .println("Coordinates of intersection pt:"
                      + intPt);
              System.out.println("Coordinates of vertices: ");
              for (int k = 0; k < pt.length; k++) {
                System.out.println(k + ":" + ptw[k].x + " "
                    + ptw[k].y + " " + ptw[k].z);
              }
              System.out
                  .println("Closest vertex: " + closestVert);
              if (iColor != null) {
                System.out.println("Interpolated color: "
                    + iColor);
              }
              if (iNormal != null) {
                System.out.println("Interpolated normal: "
                    + iNormal);
              }
            }
          }
        }
      }
    }
    wakeupOn(new WakeupOnAWTEvent(MouseEvent.MOUSE_PRESSED));
  }
}





The use of the CollisionDetector

import java.awt.BorderLayout;
import java.awt.Button;
import java.awt.Frame;
import java.awt.Panel;
import java.awt.event.ActionEvent;
import java.awt.event.ActionListener;
import java.util.Enumeration;
import javax.media.j3d.AmbientLight;
import javax.media.j3d.Appearance;
import javax.media.j3d.Behavior;
import javax.media.j3d.BoundingSphere;
import javax.media.j3d.Bounds;
import javax.media.j3d.BranchGroup;
import javax.media.j3d.Canvas3D;
import javax.media.j3d.DirectionalLight;
import javax.media.j3d.IndexedQuadArray;
import javax.media.j3d.Locale;
import javax.media.j3d.Material;
import javax.media.j3d.Node;
import javax.media.j3d.PhysicalBody;
import javax.media.j3d.PhysicalEnvironment;
import javax.media.j3d.Shape3D;
import javax.media.j3d.Transform3D;
import javax.media.j3d.TransformGroup;
import javax.media.j3d.View;
import javax.media.j3d.ViewPlatform;
import javax.media.j3d.VirtualUniverse;
import javax.media.j3d.WakeupCriterion;
import javax.media.j3d.WakeupOnCollisionEntry;
import javax.media.j3d.WakeupOnCollisionExit;
import javax.media.j3d.WakeupOnCollisionMovement;
import javax.media.j3d.WakeupOr;
import javax.vecmath.Color3f;
import javax.vecmath.Point3d;
import javax.vecmath.Point3f;
import javax.vecmath.Vector3d;
import javax.vecmath.Vector3f;
import com.sun.j3d.utils.picking.behaviors.PickTranslateBehavior;
/**
 * This class demonstrates the use of the CollisionDetector class to perform
 * processing when objects collide. When this program is run the white cube can
 * be selected and moved by dragging on it with the right mouse button. You
 * should notice that there is a problem if the movable cube comes into contact
 * with both of the static cubes at one time. A way round this is given in the
 * SimpleCollision2 application.
 * 
 * @see CollisionDetector
 * @see SimpleCollision2
 * @author I.J.Palmer
 * @version 1.0
 */
public class SimpleCollision extends Frame implements ActionListener {
  protected Canvas3D myCanvas3D = new Canvas3D(null);
  protected Button exitButton = new Button("Exit");
  protected BoundingSphere bounds = new BoundingSphere(new Point3d(0.0, 0.0,
      0.0), 100.0);
  /** Transform for the left cube. */
  protected TransformGroup leftGroup;
  /** Transform for the right cube */
  protected TransformGroup rightGroup;
  /**
   * Transform for the movable cube. This has read, write and pick reporting
   * capabilities enabled.
   */
  protected TransformGroup moveGroup;
  /** A transform to change the size of the movable cube. */
  protected TransformGroup scaleGroup;
  /** The left static cube. */
  protected Shape3D leftCube;
  /** The right static cube. */
  protected Shape3D rightCube;
  /** The movable cube that will collide with the other two cubes */
  protected Shape3D moveCube;
  /**
   * This builds the view branch of the scene graph.
   */
  protected BranchGroup buildViewBranch(Canvas3D c) {
    BranchGroup viewBranch = new BranchGroup();
    Transform3D viewXfm = new Transform3D();
    viewXfm.set(new Vector3f(0.0f, 0.0f, 10.0f));
    TransformGroup viewXfmGroup = new TransformGroup(viewXfm);
    ViewPlatform myViewPlatform = new ViewPlatform();
    PhysicalBody myBody = new PhysicalBody();
    PhysicalEnvironment myEnvironment = new PhysicalEnvironment();
    viewXfmGroup.addChild(myViewPlatform);
    viewBranch.addChild(viewXfmGroup);
    View myView = new View();
    myView.addCanvas3D(c);
    myView.attachViewPlatform(myViewPlatform);
    myView.setPhysicalBody(myBody);
    myView.setPhysicalEnvironment(myEnvironment);
    return viewBranch;
  }
  /**
   * This adds some lights to the content branch of the scene graph.
   * 
   * @param b
   *            The BranchGroup to add the lights to.
   */
  protected void addLights(BranchGroup b) {
    Color3f ambLightColour = new Color3f(0.5f, 0.5f, 0.5f);
    AmbientLight ambLight = new AmbientLight(ambLightColour);
    ambLight.setInfluencingBounds(bounds);
    Color3f dirLightColour = new Color3f(1.0f, 1.0f, 1.0f);
    Vector3f dirLightDir = new Vector3f(-1.0f, -1.0f, -1.0f);
    DirectionalLight dirLight = new DirectionalLight(dirLightColour,
        dirLightDir);
    dirLight.setInfluencingBounds(bounds);
    b.addChild(ambLight);
    b.addChild(dirLight);
  }
  /**
   * Creates the content branch of the scene graph.
   * 
   * @return BranchGroup with content attached.
   */
  protected BranchGroup buildContentBranch() {
    //First create a different appearance for each cube
    Appearance app1 = new Appearance();
    Appearance app2 = new Appearance();
    Appearance app3 = new Appearance();
    Color3f ambientColour1 = new Color3f(1.0f, 0.0f, 0.0f);
    Color3f ambientColour2 = new Color3f(1.0f, 1.0f, 0.0f);
    Color3f ambientColour3 = new Color3f(1.0f, 1.0f, 1.0f);
    Color3f emissiveColour = new Color3f(0.0f, 0.0f, 0.0f);
    Color3f specularColour = new Color3f(1.0f, 1.0f, 1.0f);
    Color3f diffuseColour1 = new Color3f(1.0f, 0.0f, 0.0f);
    Color3f diffuseColour2 = new Color3f(1.0f, 1.0f, 0.0f);
    Color3f diffuseColour3 = new Color3f(1.0f, 1.0f, 1.0f);
    float shininess = 20.0f;
    app1.setMaterial(new Material(ambientColour1, emissiveColour,
        diffuseColour1, specularColour, shininess));
    app2.setMaterial(new Material(ambientColour2, emissiveColour,
        diffuseColour2, specularColour, shininess));
    app3.setMaterial(new Material(ambientColour3, emissiveColour,
        diffuseColour3, specularColour, shininess));
    //Create the vertex data for the cube. Since each shape is
    //a cube we can use the same vertex data for each cube
    IndexedQuadArray indexedCube = new IndexedQuadArray(8,
        IndexedQuadArray.COORDINATES | IndexedQuadArray.NORMALS, 24);
    Point3f[] cubeCoordinates = { new Point3f(1.0f, 1.0f, 1.0f),
        new Point3f(-1.0f, 1.0f, 1.0f),
        new Point3f(-1.0f, -1.0f, 1.0f),
        new Point3f(1.0f, -1.0f, 1.0f), new Point3f(1.0f, 1.0f, -1.0f),
        new Point3f(-1.0f, 1.0f, -1.0f),
        new Point3f(-1.0f, -1.0f, -1.0f),
        new Point3f(1.0f, -1.0f, -1.0f) };
    Vector3f[] cubeNormals = { new Vector3f(0.0f, 0.0f, 1.0f),
        new Vector3f(0.0f, 0.0f, -1.0f),
        new Vector3f(1.0f, 0.0f, 0.0f),
        new Vector3f(-1.0f, 0.0f, 0.0f),
        new Vector3f(0.0f, 1.0f, 0.0f), new Vector3f(0.0f, -1.0f, 0.0f) };
    int cubeCoordIndices[] = { 0, 1, 2, 3, 7, 6, 5, 4, 0, 3, 7, 4, 5, 6, 2,
        1, 0, 4, 5, 1, 6, 7, 3, 2 };
    int cubeNormalIndices[] = { 0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2, 3, 3,
        3, 3, 4, 4, 4, 4, 5, 5, 5, 5 };
    indexedCube.setCoordinates(0, cubeCoordinates);
    indexedCube.setNormals(0, cubeNormals);
    indexedCube.setCoordinateIndices(0, cubeCoordIndices);
    indexedCube.setNormalIndices(0, cubeNormalIndices);
    //Create the three cubes
    leftCube = new Shape3D(indexedCube, app1);
    rightCube = new Shape3D(indexedCube, app2);
    moveCube = new Shape3D(indexedCube, app3);
    //Define the user data so that we can print out the
    //name of the colliding cube.
    leftCube.setUserData(new String("left cube"));
    rightCube.setUserData(new String("right cube"));
    //Create the content branch and add the lights
    BranchGroup contentBranch = new BranchGroup();
    addLights(contentBranch);
    //Create and set up the movable cube"s TransformGroup.
    //This scales and translates the cube and then sets the
    // read, write and pick reporting capabilities.
    Transform3D moveXfm = new Transform3D();
    moveXfm.set(0.7, new Vector3d(0.0, 2.0, 1.0));
    moveGroup = new TransformGroup(moveXfm);
    moveGroup.setCapability(TransformGroup.ALLOW_TRANSFORM_WRITE);
    moveGroup.setCapability(TransformGroup.ALLOW_TRANSFORM_READ);
    moveGroup.setCapability(TransformGroup.ENABLE_PICK_REPORTING);
    //Create the left cube"s TransformGroup
    Transform3D leftGroupXfm = new Transform3D();
    leftGroupXfm.set(new Vector3d(-1.5, 0.0, 0.0));
    leftGroup = new TransformGroup(leftGroupXfm);
    //Create the right cube"s TransformGroup
    Transform3D rightGroupXfm = new Transform3D();
    rightGroupXfm.set(new Vector3d(1.5, 0.0, 0.0));
    rightGroup = new TransformGroup(rightGroupXfm);
    //Add the behaviour to allow us to move the cube
    PickTranslateBehavior pickTranslate = new PickTranslateBehavior(
        contentBranch, myCanvas3D, bounds);
    contentBranch.addChild(pickTranslate);
    //Add our CollisionDetector class to detect collisions with
    //the movable cube.
    CollisionDetector myColDet = new CollisionDetector(moveCube, bounds);
    contentBranch.addChild(myColDet);
    //Create the content branch hierarchy.
    contentBranch.addChild(moveGroup);
    contentBranch.addChild(leftGroup);
    contentBranch.addChild(rightGroup);
    moveGroup.addChild(moveCube);
    leftGroup.addChild(leftCube);
    rightGroup.addChild(rightCube);
    return contentBranch;
  }
  /**
   * Process the exit button action to exit the application.
   */
  public void actionPerformed(ActionEvent e) {
    if (e.getSource() == exitButton) {
      dispose();
      System.exit(0);
    }
  }
  public SimpleCollision() {
    VirtualUniverse myUniverse = new VirtualUniverse();
    Locale myLocale = new Locale(myUniverse);
    myLocale.addBranchGraph(buildViewBranch(myCanvas3D));
    myLocale.addBranchGraph(buildContentBranch());
    setTitle("SimpleWorld");
    setSize(400, 400);
    setLayout(new BorderLayout());
    Panel bottom = new Panel();
    bottom.add(exitButton);
    add(BorderLayout.CENTER, myCanvas3D);
    add(BorderLayout.SOUTH, bottom);
    exitButton.addActionListener(this);
    setVisible(true);
  }
  public static void main(String[] args) {
    SimpleCollision sw = new SimpleCollision();
  }
}
/**
 * A simple collision detector class. This responds to a collision event by
 * printing a message with information about the type of collision event and the
 * object that has been collided with.
 * 
 * @author I.J.Palmer
 * @version 1.0
 */
class CollisionDetector extends Behavior {
  /** The separate criteria used to wake up this beahvior. */
  protected WakeupCriterion[] theCriteria;
  /** The OR of the separate criteria. */
  protected WakeupOr oredCriteria;
  /** The shape that is watched for collision. */
  protected Shape3D collidingShape;
  /**
   * @param theShape
   *            Shape3D that is to be watched for collisions.
   * @param theBounds
   *            Bounds that define the active region for this behaviour
   */
  public CollisionDetector(Shape3D theShape, Bounds theBounds) {
    collidingShape = theShape;
    setSchedulingBounds(theBounds);
  }
  /**
   * This creates an entry, exit and movement collision criteria. These are
   * then OR"ed together, and the wake up condition set to the result.
   */
  public void initialize() {
    theCriteria = new WakeupCriterion[3];
    theCriteria[0] = new WakeupOnCollisionEntry(collidingShape);
    theCriteria[1] = new WakeupOnCollisionExit(collidingShape);
    theCriteria[2] = new WakeupOnCollisionMovement(collidingShape);
    oredCriteria = new WakeupOr(theCriteria);
    wakeupOn(oredCriteria);
  }
  /**
   * Where the work is done in this class. A message is printed out using the
   * userData of the object collided with. The wake up condition is then set
   * to the OR"ed criterion again.
   */
  public void processStimulus(Enumeration criteria) {
    WakeupCriterion theCriterion = (WakeupCriterion) criteria.nextElement();
    if (theCriterion instanceof WakeupOnCollisionEntry) {
      Node theLeaf = ((WakeupOnCollisionEntry) theCriterion)
          .getTriggeringPath().getObject();
      System.out.println("Collided with " + theLeaf.getUserData());
    } else if (theCriterion instanceof WakeupOnCollisionExit) {
      Node theLeaf = ((WakeupOnCollisionExit) theCriterion)
          .getTriggeringPath().getObject();
      System.out.println("Stopped colliding with  "
          + theLeaf.getUserData());
    } else {
      Node theLeaf = ((WakeupOnCollisionMovement) theCriterion)
          .getTriggeringPath().getObject();
      System.out.println("Moved whilst colliding with "
          + theLeaf.getUserData());
    }
    wakeupOn(oredCriteria);
  }
}





The use of two collision detectors to overcome the

import java.awt.BorderLayout;
import java.awt.Button;
import java.awt.Frame;
import java.awt.Panel;
import java.awt.event.ActionEvent;
import java.awt.event.ActionListener;
import java.util.Enumeration;
import javax.media.j3d.AmbientLight;
import javax.media.j3d.Appearance;
import javax.media.j3d.Behavior;
import javax.media.j3d.BoundingSphere;
import javax.media.j3d.Bounds;
import javax.media.j3d.BranchGroup;
import javax.media.j3d.Canvas3D;
import javax.media.j3d.DirectionalLight;
import javax.media.j3d.IndexedQuadArray;
import javax.media.j3d.Locale;
import javax.media.j3d.Material;
import javax.media.j3d.PhysicalBody;
import javax.media.j3d.PhysicalEnvironment;
import javax.media.j3d.Shape3D;
import javax.media.j3d.Transform3D;
import javax.media.j3d.TransformGroup;
import javax.media.j3d.View;
import javax.media.j3d.ViewPlatform;
import javax.media.j3d.VirtualUniverse;
import javax.media.j3d.WakeupCriterion;
import javax.media.j3d.WakeupOnCollisionEntry;
import javax.media.j3d.WakeupOnCollisionExit;
import javax.media.j3d.WakeupOnCollisionMovement;
import javax.media.j3d.WakeupOr;
import javax.vecmath.Color3f;
import javax.vecmath.Point3d;
import javax.vecmath.Point3f;
import javax.vecmath.Vector3d;
import javax.vecmath.Vector3f;
import com.sun.j3d.utils.picking.behaviors.PickTranslateBehavior;
/**
 * This class demonstrates the use of two collision detectors to overcome the
 * problem of an object colliding with more than one object at a time. The white
 * cube is movable by dragging it with the right mouse button.
 * 
 * @see CollisionDetector2
 * @author I.J.Palmer
 * @version 1.0
 */
public class SimpleCollision2 extends Frame implements ActionListener {
  protected Canvas3D myCanvas3D = new Canvas3D(null);
  protected Button exitButton = new Button("Exit");
  protected BoundingSphere bounds = new BoundingSphere(new Point3d(0.0, 0.0,
      0.0), 100.0);
  /** Transform for the left cube. */
  protected TransformGroup leftGroup;
  /** Transform for the right cube */
  protected TransformGroup rightGroup;
  /**
   * Transform for the movable cube. This has read, write and pick reporting
   * capabilities enabled.
   */
  protected TransformGroup moveGroup;
  /** The left static cube. */
  protected Shape3D leftCube;
  /** The right static cube. */
  protected Shape3D rightCube;
  /** The movable cube that will collide with the other two cubes */
  protected Shape3D moveCube;
  /**
   * This builds the view branch of the scene graph.
   * 
   * @return BranchGroup with viewing objects attached.
   */
  protected BranchGroup buildViewBranch(Canvas3D c) {
    BranchGroup viewBranch = new BranchGroup();
    Transform3D viewXfm = new Transform3D();
    viewXfm.set(new Vector3f(0.0f, 0.0f, 10.0f));
    TransformGroup viewXfmGroup = new TransformGroup(viewXfm);
    ViewPlatform myViewPlatform = new ViewPlatform();
    PhysicalBody myBody = new PhysicalBody();
    PhysicalEnvironment myEnvironment = new PhysicalEnvironment();
    viewXfmGroup.addChild(myViewPlatform);
    viewBranch.addChild(viewXfmGroup);
    View myView = new View();
    myView.addCanvas3D(c);
    myView.attachViewPlatform(myViewPlatform);
    myView.setPhysicalBody(myBody);
    myView.setPhysicalEnvironment(myEnvironment);
    return viewBranch;
  }
  /**
   * This adds some lights to the content branch of the scene graph.
   * 
   * @param b
   *            The BranchGroup to add the lights to.
   */
  protected void addLights(BranchGroup b) {
    Color3f ambLightColour = new Color3f(0.5f, 0.5f, 0.5f);
    AmbientLight ambLight = new AmbientLight(ambLightColour);
    ambLight.setInfluencingBounds(bounds);
    Color3f dirLightColour = new Color3f(1.0f, 1.0f, 1.0f);
    Vector3f dirLightDir = new Vector3f(-1.0f, -1.0f, -1.0f);
    DirectionalLight dirLight = new DirectionalLight(dirLightColour,
        dirLightDir);
    dirLight.setInfluencingBounds(bounds);
    b.addChild(ambLight);
    b.addChild(dirLight);
  }
  /**
   * Creates the content branch of the scene graph.
   * 
   * @return BranchGroup with content attached.
   */
  protected BranchGroup buildContentBranch() {
    //First create a different appearance for each cube
    Appearance app1 = new Appearance();
    Appearance app2 = new Appearance();
    Appearance app3 = new Appearance();
    Color3f ambientColour1 = new Color3f(1.0f, 0.0f, 0.0f);
    Color3f ambientColour2 = new Color3f(1.0f, 1.0f, 0.0f);
    Color3f ambientColour3 = new Color3f(1.0f, 1.0f, 1.0f);
    Color3f emissiveColour = new Color3f(0.0f, 0.0f, 0.0f);
    Color3f specularColour = new Color3f(1.0f, 1.0f, 1.0f);
    Color3f diffuseColour1 = new Color3f(1.0f, 0.0f, 0.0f);
    Color3f diffuseColour2 = new Color3f(1.0f, 1.0f, 0.0f);
    Color3f diffuseColour3 = new Color3f(1.0f, 1.0f, 1.0f);
    float shininess = 20.0f;
    app1.setMaterial(new Material(ambientColour1, emissiveColour,
        diffuseColour1, specularColour, shininess));
    app2.setMaterial(new Material(ambientColour2, emissiveColour,
        diffuseColour2, specularColour, shininess));
    app3.setMaterial(new Material(ambientColour3, emissiveColour,
        diffuseColour3, specularColour, shininess));
    //Build the vertex array for the cubes. We can use the same
    //data for each cube so we just define one set of data
    IndexedQuadArray indexedCube = new IndexedQuadArray(8,
        IndexedQuadArray.COORDINATES | IndexedQuadArray.NORMALS, 24);
    Point3f[] cubeCoordinates = { new Point3f(1.0f, 1.0f, 1.0f),
        new Point3f(-1.0f, 1.0f, 1.0f),
        new Point3f(-1.0f, -1.0f, 1.0f),
        new Point3f(1.0f, -1.0f, 1.0f), new Point3f(1.0f, 1.0f, -1.0f),
        new Point3f(-1.0f, 1.0f, -1.0f),
        new Point3f(-1.0f, -1.0f, -1.0f),
        new Point3f(1.0f, -1.0f, -1.0f) };
    Vector3f[] cubeNormals = { new Vector3f(0.0f, 0.0f, 1.0f),
        new Vector3f(0.0f, 0.0f, -1.0f),
        new Vector3f(1.0f, 0.0f, 0.0f),
        new Vector3f(-1.0f, 0.0f, 0.0f),
        new Vector3f(0.0f, 1.0f, 0.0f), new Vector3f(0.0f, -1.0f, 0.0f) };
    int cubeCoordIndices[] = { 0, 1, 2, 3, 7, 6, 5, 4, 0, 3, 7, 4, 5, 6, 2,
        1, 0, 4, 5, 1, 6, 7, 3, 2 };
    int cubeNormalIndices[] = { 0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2, 3, 3,
        3, 3, 4, 4, 4, 4, 5, 5, 5, 5 };
    indexedCube.setCoordinates(0, cubeCoordinates);
    indexedCube.setNormals(0, cubeNormals);
    indexedCube.setCoordinateIndices(0, cubeCoordIndices);
    indexedCube.setNormalIndices(0, cubeNormalIndices);
    //Create the three cubes
    leftCube = new Shape3D(indexedCube, app1);
    rightCube = new Shape3D(indexedCube, app2);
    moveCube = new Shape3D(indexedCube, app3);
    //Define some user data so that we can print meaningful messages
    leftCube.setUserData(new String("left cube"));
    rightCube.setUserData(new String("right cube"));
    //Create the content branch and add the lights
    BranchGroup contentBranch = new BranchGroup();
    addLights(contentBranch);
    //Set up the transform to position the left cube
    Transform3D leftGroupXfm = new Transform3D();
    leftGroupXfm.set(new Vector3d(-1.5, 0.0, 0.0));
    leftGroup = new TransformGroup(leftGroupXfm);
    //Set up the transform to position the right cube
    Transform3D rightGroupXfm = new Transform3D();
    rightGroupXfm.set(new Vector3d(1.5, 0.0, 0.0));
    rightGroup = new TransformGroup(rightGroupXfm);
    //Create the movable cube"s transform with a scale and
    //a translation. Set up the
    //capabilities so it can be moved by the behaviour
    Transform3D moveXfm = new Transform3D();
    moveXfm.set(0.7, new Vector3d(0.0, 2.0, 1.0));
    moveGroup = new TransformGroup(moveXfm);
    moveGroup.setCapability(TransformGroup.ALLOW_TRANSFORM_WRITE);
    moveGroup.setCapability(TransformGroup.ALLOW_TRANSFORM_READ);
    moveGroup.setCapability(TransformGroup.ENABLE_PICK_REPORTING);
    //Create the behaviour to move the movable cube
    PickTranslateBehavior pickTranslate = new PickTranslateBehavior(
        contentBranch, myCanvas3D, bounds);
    contentBranch.addChild(pickTranslate);
    //Create and add the two colision detectors
    CollisionDetector2 myColDetLeft = new CollisionDetector2(leftCube,
        bounds);
    contentBranch.addChild(myColDetLeft);
    CollisionDetector2 myColDetRight = new CollisionDetector2(rightCube,
        bounds);
    contentBranch.addChild(myColDetRight);
    //Set up the scene graph
    contentBranch.addChild(moveGroup);
    contentBranch.addChild(leftGroup);
    contentBranch.addChild(rightGroup);
    moveGroup.addChild(moveCube);
    leftGroup.addChild(leftCube);
    rightGroup.addChild(rightCube);
    return contentBranch;
  }
  /** Process exit button"s action to quit */
  public void actionPerformed(ActionEvent e) {
    if (e.getSource() == exitButton) {
      dispose();
      System.exit(0);
    }
  }
  public SimpleCollision2() {
    VirtualUniverse myUniverse = new VirtualUniverse();
    Locale myLocale = new Locale(myUniverse);
    myLocale.addBranchGraph(buildViewBranch(myCanvas3D));
    myLocale.addBranchGraph(buildContentBranch());
    setTitle("SimpleWorld");
    setSize(400, 400);
    setLayout(new BorderLayout());
    Panel bottom = new Panel();
    bottom.add(exitButton);
    add(BorderLayout.CENTER, myCanvas3D);
    add(BorderLayout.SOUTH, bottom);
    exitButton.addActionListener(this);
    setVisible(true);
  }
  public static void main(String[] args) {
    SimpleCollision2 sw = new SimpleCollision2();
  }
}
/**
 * A simple collision detector class. This responds to a collision event by
 * printing a message with information about the type of collision event and the
 * object involved. This is a variation of the CollisionDetector class that
 * prints information about the object that is associated with this behaviour
 * rather than the object that has been collided with. An example of its use is
 * given in the SimpleCollision2 class.
 * 
 * @author I.J.Palmer
 * @version 1.0
 * @see CollisionDetector
 * @see SimpleCollision2
 */
class CollisionDetector2 extends Behavior {
  /** The shape that is being watched for collisions. */
  protected Shape3D collidingShape;
  /** The separate criteria that trigger this behaviour */
  protected WakeupCriterion[] theCriteria;
  /** The result of the "OR" of the separate criteria */
  protected WakeupOr oredCriteria;
  /**
   * @param theShape
   *            Shape3D that is to be watched for collisions.
   * @param theBounds
   *            Bounds that define the active region for this behaviour
   */
  public CollisionDetector2(Shape3D theShape, Bounds theBounds) {
    collidingShape = theShape;
    setSchedulingBounds(theBounds);
  }
  /**
   * This sets up the criteria for triggering the behaviour. It creates an
   * entry, exit and movement trigger, OR"s these together and then sets the
   * OR"ed criterion as the wake up condition.
   */
  public void initialize() {
    theCriteria = new WakeupCriterion[3];
    WakeupOnCollisionEntry startsCollision = new WakeupOnCollisionEntry(
        collidingShape);
    WakeupOnCollisionExit endsCollision = new WakeupOnCollisionExit(
        collidingShape);
    WakeupOnCollisionMovement moveCollision = new WakeupOnCollisionMovement(
        collidingShape);
    theCriteria[0] = startsCollision;
    theCriteria[1] = endsCollision;
    theCriteria[2] = moveCollision;
    oredCriteria = new WakeupOr(theCriteria);
    wakeupOn(oredCriteria);
  }
  /**
   * This is where the work is done. This identifies the type of collision
   * (entry, exit or movement) and prints a message stating that an object has
   * collided with this object. The userData field of the shape associated
   * with this collision detector # is used to identify the object. Finally,
   * the wake up condition is set to be the OR"ed criterion again.
   */
  public void processStimulus(Enumeration criteria) {
    while (criteria.hasMoreElements()) {
      WakeupCriterion theCriterion = (WakeupCriterion) criteria
          .nextElement();
      if (theCriterion instanceof WakeupOnCollisionEntry) {
        System.out.println("Collided with "
            + collidingShape.getUserData());
      } else if (theCriterion instanceof WakeupOnCollisionExit) {
        System.out.println("Stopped colliding with  "
            + collidingShape.getUserData());
      } else {
        System.out.println("Moved whilst colliding with "
            + collidingShape.getUserData());
      }
    }
    wakeupOn(oredCriteria);
  }
}





Tick Tock Collision

/*
 * @(#)TickTockCollision.java 1.16 02/10/21 13:58:00
 * 
 * Copyright (c) 1996-2002 Sun Microsystems, Inc. All Rights Reserved.
 * 
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions are met:
 *  - Redistributions of source code must retain the above copyright notice,
 * this list of conditions and the following disclaimer.
 *  - Redistribution in binary form must reproduce the above copyright notice,
 * this list of conditions and the following disclaimer in the documentation
 * and/or other materials provided with the distribution.
 * 
 * Neither the name of Sun Microsystems, Inc. or the names of contributors may
 * be used to endorse or promote products derived from this software without
 * specific prior written permission.
 * 
 * This software is provided "AS IS," without a warranty of any kind. ALL
 * EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES, INCLUDING ANY
 * IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR
 * NON-INFRINGEMENT, ARE HEREBY EXCLUDED. SUN AND ITS LICENSORS SHALL NOT BE
 * LIABLE FOR ANY DAMAGES SUFFERED BY LICENSEE AS A RESULT OF USING, MODIFYING
 * OR DISTRIBUTING THE SOFTWARE OR ITS DERIVATIVES. IN NO EVENT WILL SUN OR ITS
 * LICENSORS BE LIABLE FOR ANY LOST REVENUE, PROFIT OR DATA, OR FOR DIRECT,
 * INDIRECT, SPECIAL, CONSEQUENTIAL, INCIDENTAL OR PUNITIVE DAMAGES, HOWEVER
 * CAUSED AND REGARDLESS OF THE THEORY OF LIABILITY, ARISING OUT OF THE USE OF
 * OR INABILITY TO USE SOFTWARE, EVEN IF SUN HAS BEEN ADVISED OF THE POSSIBILITY
 * OF SUCH DAMAGES.
 * 
 * You acknowledge that Software is not designed,licensed or intended for use in
 * the design, construction, operation or maintenance of any nuclear facility.
 */
import java.applet.Applet;
import java.awt.BorderLayout;
import java.awt.GraphicsConfiguration;
import java.util.Enumeration;
import javax.media.j3d.Alpha;
import javax.media.j3d.Appearance;
import javax.media.j3d.Background;
import javax.media.j3d.Behavior;
import javax.media.j3d.BoundingSphere;
import javax.media.j3d.BranchGroup;
import javax.media.j3d.Canvas3D;
import javax.media.j3d.ColoringAttributes;
import javax.media.j3d.Group;
import javax.media.j3d.QuadArray;
import javax.media.j3d.RotationInterpolator;
import javax.media.j3d.Shape3D;
import javax.media.j3d.Transform3D;
import javax.media.j3d.TransformGroup;
import javax.media.j3d.WakeupOnCollisionEntry;
import javax.media.j3d.WakeupOnCollisionExit;
import javax.vecmath.Color3f;
import javax.vecmath.Point3d;
import javax.vecmath.Vector3d;
import com.sun.j3d.utils.applet.MainFrame;
import com.sun.j3d.utils.geometry.ColorCube;
import com.sun.j3d.utils.universe.SimpleUniverse;
public class TickTockCollision extends Applet {
  private SimpleUniverse u = null;
  public BranchGroup createSceneGraph() {
    // Create the root of the branch graph
    BranchGroup objRoot = new BranchGroup();
    // Create a Transformgroup to scale all objects so they
    // appear in the scene.
    TransformGroup objScale = new TransformGroup();
    Transform3D t3d = new Transform3D();
    t3d.setScale(0.4);
    objScale.setTransform(t3d);
    objRoot.addChild(objScale);
    // Create a bounds for the background and behaviors
    BoundingSphere bounds = new BoundingSphere(new Point3d(0.0, 0.0, 0.0),
        100.0);
    // Set up the background
    Color3f bgColor = new Color3f(0.05f, 0.05f, 0.2f);
    Background bg = new Background(bgColor);
    bg.setApplicationBounds(bounds);
    objScale.addChild(bg);
    // Create a pair of transform group nodes and initialize them to
    // identity. Enable the TRANSFORM_WRITE capability so that
    // our behaviors can modify them at runtime. Add them to the
    // root of the subgraph.
    TransformGroup objTrans1 = new TransformGroup();
    objTrans1.setCapability(TransformGroup.ALLOW_TRANSFORM_WRITE);
    objScale.addChild(objTrans1);
    TransformGroup objTrans2 = new TransformGroup();
    objTrans2.setCapability(TransformGroup.ALLOW_TRANSFORM_WRITE);
    objTrans1.addChild(objTrans2);
    // Create the positioning and scaling transform group node.
    Transform3D t = new Transform3D();
    t.set(0.3, new Vector3d(0.0, -1.5, 0.0));
    TransformGroup objTrans3 = new TransformGroup(t);
    objTrans2.addChild(objTrans3);
    // Create a simple shape leaf node, add it to the scene graph.
    objTrans3.addChild(new ColorCube());
    // Create a new Behavior object that will perform the desired
    // rotation on the specified transform object and add it into
    // the scene graph.
    Transform3D yAxis1 = new Transform3D();
    yAxis1.rotX(Math.PI / 2.0);
    Alpha tickTockAlpha = new Alpha(-1, Alpha.INCREASING_ENABLE
        | Alpha.DECREASING_ENABLE, 0, 0, 5000, 2500, 200, 5000, 2500,
        200);
    RotationInterpolator tickTock = new RotationInterpolator(tickTockAlpha,
        objTrans1, yAxis1, -(float) Math.PI / 2.0f,
        (float) Math.PI / 2.0f);
    tickTock.setSchedulingBounds(bounds);
    objTrans2.addChild(tickTock);
    // Create a new Behavior object that will perform the desired
    // rotation on the specified transform object and add it into
    // the scene graph.
    Transform3D yAxis2 = new Transform3D();
    Alpha rotationAlpha = new Alpha(-1, Alpha.INCREASING_ENABLE, 0, 0,
        4000, 0, 0, 0, 0, 0);
    RotationInterpolator rotator = new RotationInterpolator(rotationAlpha,
        objTrans2, yAxis2, 0.0f, (float) Math.PI * 2.0f);
    rotator.setSchedulingBounds(bounds);
    objTrans2.addChild(rotator);
    // Now create a pair of rectangular boxes, each with a collision
    // detection behavior attached. The behavior will highlight the
    // object when it is in a state of collision.
    Group box1 = createBox(0.3, new Vector3d(-1.3, 0.0, 0.0));
    Group box2 = createBox(0.3, new Vector3d(1.3, 0.0, 0.0));
    objScale.addChild(box1);
    objScale.addChild(box2);
    // Have Java 3D perform optimizations on this scene graph.
    objRoot.rupile();
    return objRoot;
  }
  private Group createBox(double scale, Vector3d pos) {
    // Create a transform group node to scale and position the object.
    Transform3D t = new Transform3D();
    t.set(scale, pos);
    TransformGroup objTrans = new TransformGroup(t);
    // Create a simple shape leaf node and add it to the scene graph
    Shape3D shape = new Box(0.5, 5.0, 1.0);
    objTrans.addChild(shape);
    // Create a new ColoringAttributes object for the shape"s
    // appearance and make it writable at runtime.
    Appearance app = shape.getAppearance();
    ColoringAttributes ca = new ColoringAttributes();
    ca.setColor(0.6f, 0.3f, 0.0f);
    app.setCapability(app.ALLOW_COLORING_ATTRIBUTES_WRITE);
    app.setColoringAttributes(ca);
    // Create a new Behavior object that will perform the collision
    // detection on the specified object, and add it into
    // the scene graph.
    CollisionDetector cd = new CollisionDetector(shape);
    BoundingSphere bounds = new BoundingSphere(new Point3d(0.0, 0.0, 0.0),
        100.0);
    cd.setSchedulingBounds(bounds);
    // Add the behavior to the scene graph
    objTrans.addChild(cd);
    return objTrans;
  }
  public TickTockCollision() {
  }
  public void init() {
    setLayout(new BorderLayout());
    GraphicsConfiguration config = SimpleUniverse
        .getPreferredConfiguration();
    Canvas3D c = new Canvas3D(config);
    add("Center", c);
    // Create a simple scene and attach it to the virtual universe
    BranchGroup scene = createSceneGraph();
    u = new SimpleUniverse(c);
    // This will move the ViewPlatform back a bit so the
    // objects in the scene can be viewed.
    u.getViewingPlatform().setNominalViewingTransform();
    u.addBranchGraph(scene);
  }
  public void destroy() {
    u.cleanup();
  }
  //
  // The following allows TickTockCollision to be run as an application
  // as well as an applet
  //
  public static void main(String[] args) {
    new MainFrame(new TickTockCollision(), 700, 700);
  }
}
class CollisionDetector extends Behavior {
  private static final Color3f highlightColor = new Color3f(0.0f, 1.0f, 0.0f);
  private static final ColoringAttributes highlight = new ColoringAttributes(
      highlightColor, ColoringAttributes.SHADE_GOURAUD);
  private boolean inCollision = false;
  private Shape3D shape;
  private ColoringAttributes shapeColoring;
  private Appearance shapeAppearance;
  private WakeupOnCollisionEntry wEnter;
  private WakeupOnCollisionExit wExit;
  public CollisionDetector(Shape3D s) {
    shape = s;
    shapeAppearance = shape.getAppearance();
    shapeColoring = shapeAppearance.getColoringAttributes();
    inCollision = false;
  }
  public void initialize() {
    wEnter = new WakeupOnCollisionEntry(shape);
    wExit = new WakeupOnCollisionExit(shape);
    wakeupOn(wEnter);
  }
  public void processStimulus(Enumeration criteria) {
    inCollision = !inCollision;
    if (inCollision) {
      shapeAppearance.setColoringAttributes(highlight);
      wakeupOn(wExit);
    } else {
      shapeAppearance.setColoringAttributes(shapeColoring);
      wakeupOn(wEnter);
    }
  }
}
class Box extends Shape3D {
  public Box(double xsize, double ysize, double zsize) {
    super();
    double xmin = -xsize / 2.0;
    double xmax = xsize / 2.0;
    double ymin = -ysize / 2.0;
    double ymax = ysize / 2.0;
    double zmin = -zsize / 2.0;
    double zmax = zsize / 2.0;
    QuadArray box = new QuadArray(24, QuadArray.COORDINATES);
    Point3d verts[] = new Point3d[24];
    // front face
    verts[0] = new Point3d(xmax, ymin, zmax);
    verts[1] = new Point3d(xmax, ymax, zmax);
    verts[2] = new Point3d(xmin, ymax, zmax);
    verts[3] = new Point3d(xmin, ymin, zmax);
    // back face
    verts[4] = new Point3d(xmin, ymin, zmin);
    verts[5] = new Point3d(xmin, ymax, zmin);
    verts[6] = new Point3d(xmax, ymax, zmin);
    verts[7] = new Point3d(xmax, ymin, zmin);
    // right face
    verts[8] = new Point3d(xmax, ymin, zmin);
    verts[9] = new Point3d(xmax, ymax, zmin);
    verts[10] = new Point3d(xmax, ymax, zmax);
    verts[11] = new Point3d(xmax, ymin, zmax);
    // left face
    verts[12] = new Point3d(xmin, ymin, zmax);
    verts[13] = new Point3d(xmin, ymax, zmax);
    verts[14] = new Point3d(xmin, ymax, zmin);
    verts[15] = new Point3d(xmin, ymin, zmin);
    // top face
    verts[16] = new Point3d(xmax, ymax, zmax);
    verts[17] = new Point3d(xmax, ymax, zmin);
    verts[18] = new Point3d(xmin, ymax, zmin);
    verts[19] = new Point3d(xmin, ymax, zmax);
    // bottom face
    verts[20] = new Point3d(xmin, ymin, zmax);
    verts[21] = new Point3d(xmin, ymin, zmin);
    verts[22] = new Point3d(xmax, ymin, zmin);
    verts[23] = new Point3d(xmax, ymin, zmax);
    box.setCoordinates(0, verts);
    setGeometry(box);
    setAppearance(new Appearance());
  }
}