Java/2D Graphics GUI/JPEG

Материал из Java эксперт
Версия от 21:01, 31 мая 2010; (обсуждение)
(разн.) ← Предыдущая | Текущая версия (разн.) | Следующая → (разн.)
Перейти к: навигация, поиск

Encoding an image to a JPEG file

<source lang="java">

import java.awt.Color; import java.awt.Font; import java.awt.Graphics; import java.awt.image.BufferedImage; import java.awt.image.PixelGrabber; import java.io.FileOutputStream; import com.sun.image.codec.jpeg.JPEGCodec; import com.sun.image.codec.jpeg.JPEGEncodeParam; import com.sun.image.codec.jpeg.JPEGImageEncoder; public class Main {

 public static void main(String[] args) throws Exception {
   BufferedImage img = new BufferedImage(100, 100, BufferedImage.TYPE_INT_RGB);
   Graphics g = img.getGraphics();
   g.setColor(Color.red);
   g.setFont(new Font("Arial", Font.BOLD, 14));
   g.drawString("Reference", 10, 80);
   int w = 100;
   int h = 100;
   int x = 1;
   int y = 1;
   
   int[] pixels = new int[w * h];
   PixelGrabber pg = new PixelGrabber(img, x, y, w, h, pixels, 0, w);
   pg.grabPixels();
   BufferedImage bimg = new BufferedImage(w, h, BufferedImage.TYPE_INT_RGB);
   for (int j = 0; j < h; j++) {
     for (int i = 0; i < w; i++) {
       bimg.setRGB(x + i, y + j, pixels[j * w + i]);
     }
   }
   FileOutputStream fout = new FileOutputStream("jpg.jpg");
   JPEGImageEncoder jencoder = JPEGCodec.createJPEGEncoder(fout);
   JPEGEncodeParam enParam = jencoder.getDefaultJPEGEncodeParam(bimg);
   enParam.setQuality(1.0F, true);
   jencoder.setJPEGEncodeParam(enParam);
   jencoder.encode(bimg);
   fout.close();
 }

}


 </source>   



Get Jpeg Properties

<source lang="java"> /*

* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements.  See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License.  You may obtain a copy of the License at
* 
*      http://www.apache.org/licenses/LICENSE-2.0
* 
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/

// Revised from apache cocoon import java.io.File; import java.io.FileNotFoundException; import java.io.IOException; import java.io.BufferedInputStream; import java.io.FileInputStream; /**

* @version $Id: ImageUtils.java 587751 2007-10-24 02:41:36Z vgritsenko $
*/

final public class ImageUtils {

   final public static ImageProperties getJpegProperties(File file) throws FileNotFoundException, IOException{
       BufferedInputStream in = null;
       try {
           in = new BufferedInputStream(new FileInputStream(file));
           // check for "magic" header
           byte[] buf = new byte[2];
           int count = in.read(buf, 0, 2);
           if (count < 2) {
               throw new RuntimeException("Not a valid Jpeg file!");
           }
           if ((buf[0]) != (byte) 0xFF || (buf[1]) != (byte) 0xD8) {
               throw new RuntimeException("Not a valid Jpeg file!");
           }
           int width = 0;
           int height = 0;
           char[] comment = null;
           boolean hasDims = false;
           boolean hasComment = false;
           int ch = 0;
           while (ch != 0xDA && !(hasDims && hasComment)) {
               /* Find next marker (JPEG markers begin with 0xFF) */
               while (ch != 0xFF) {
                   ch = in.read();
               }
               /* JPEG markers can be padded with unlimited 0xFF"s */
               while (ch == 0xFF) {
                   ch = in.read();
               }
               /* Now, ch contains the value of the marker. */
               int length = 256 * in.read();
               length += in.read();
               if (length < 2) {
                   throw new RuntimeException("Not a valid Jpeg file!");
               }
               /* Now, length contains the length of the marker. */
               if (ch >= 0xC0 && ch <= 0xC3) {
                   in.read();
                   height = 256 * in.read();
                   height += in.read();
                   width = 256 * in.read();
                   width += in.read();
                   for (int foo = 0; foo < length - 2 - 5; foo++) {
                       in.read();
                   }
                   hasDims = true;
               }
               else if (ch == 0xFE) {
                   // that"s the comment marker
                   comment = new char[length-2];
                   for (int foo = 0; foo < length - 2; foo++)
                       comment[foo] = (char) in.read();
                   hasComment = true;
               }
               else {
                   // just skip marker
                   for (int foo = 0; foo < length - 2; foo++) {
                       in.read();
                   }
               }
           }
           return (new ImageProperties(width, height, comment, "jpeg"));
       }
       finally {
           if (in != null) {
               try {
                   in.close();
               }
               catch (IOException e) {
               }
           }
       }
   }
   final public static ImageProperties getGifProperties(File file) throws FileNotFoundException, IOException{
       BufferedInputStream in = null;
       try {
           in = new BufferedInputStream(new FileInputStream(file));
           byte[] buf = new byte[10];
           int count = in.read(buf, 0, 10);
           if (count < 10) {
               throw new RuntimeException("Not a valid Gif file!");
           }
           if ((buf[0]) != (byte) "G" || (buf[1]) != (byte) "I" || (buf[2]) != (byte) "F") {
               throw new RuntimeException("Not a valid Gif file!");
           }
           int w1 = (buf[6] & 0xff) | (buf[6] & 0x80);
           int w2 = (buf[7] & 0xff) | (buf[7] & 0x80);
           int h1 = (buf[8] & 0xff) | (buf[8] & 0x80);
           int h2 = (buf[9] & 0xff) | (buf[9] & 0x80);
           int width = w1 + (w2 << 8);
           int height = h1 + (h2 << 8);
           return (new ImageProperties(width, height, null,"gif"));
       }
       finally {
           if (in != null) {
               try {
                   in.close();
               }
               catch (IOException e) {
               }
           }
       }
   }

} /*

* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements.  See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License.  You may obtain a copy of the License at
* 
*      http://www.apache.org/licenses/LICENSE-2.0
* 
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/

/**

* @version $Id: ImageProperties.java 587751 2007-10-24 02:41:36Z vgritsenko $
*/

final class ImageProperties {

   final public int width;
   final public int height;
   final public char[] comment;
   final public String type;
   public ImageProperties(int width, int height, char[] comment, String type) {
       this.width = width;
       this.height = height;
       this.rument = comment;
       this.type = type;
   }
   public String toString() {
       StringBuffer sb = new StringBuffer();
       sb.append(type).append(" ").append(width).append("x").append(height);
       if (comment != null) {
           sb.append(" (").append(comment).append(")");
       }
       return (sb.toString());
   }

}

 </source>   



Performs a jpeg compression of an image

<source lang="java"> // Copyright (C) 1998, James R. Weeks and BioElectroMech. // Visit BioElectroMech at www.obrador.ru. Email James@obrador.ru. // This software is based in part on the work of the Independent JPEG Group. // See license.txt for details about the allowed used of this software. // See IJGreadme.txt for details about the Independent JPEG Group"s license. import java.awt.AWTException; import java.awt.Frame; import java.awt.Image; import java.awt.MediaTracker; import java.awt.Toolkit; import java.awt.image.PixelGrabber; import java.io.BufferedOutputStream; import java.io.File; import java.io.FileOutputStream; import java.io.IOException; import java.io.OutputStream; import java.util.Vector; public class Jpeg {

 /** ************ Main Method *************** */
 /*****************************************************************************
  * Jpeg("Imagefile", Quality, "OutFileName") According to JAVA virtual
  * machine, the files which can be read are jpeg, tiff and gif files
  ****************************************************************************/
 public static void StandardUsage() {
   System.out.println("JpegEncoder for Java(tm) Version 0.9");
   System.out.println("");
   System.out
       .println("Program usage: java Jpeg \"InputImage\".\"ext\" Quality [\"OutputFile\"[.jpg]]");
   System.out.println("");
   System.out
       .println("Where \"InputImage\" is the name of an existing image in the current directory.");
   System.out
       .println("  (\"InputImage may specify a directory, too.) \"ext\" must be .tif, .gif,");
   System.out.println("  or .jpg.");
   System.out
       .println("Quality is an integer (0 to 100) that specifies how similar the compressed");
   System.out
       .println("  image is to \"InputImage.\"  100 is almost exactly like \"InputImage\" and 0 is");
   System.out.println("  most dissimilar.  In most cases, 70 - 80 gives very good results.");
   System.out
       .println("\"OutputFile\" is an optional argument.  If \"OutputFile\" isn"t specified, then");
   System.out
       .println("  the input file name is adopted.  This program will NOT write over an existing");
   System.out
       .println("  file.  If a directory is specified for the input image, then \"OutputFile\"");
   System.out
       .println("  will be written in that directory.  The extension \".jpg\" may automatically be");
   System.out.println("  added.");
   System.out.println("");
   System.out
       .println("Copyright 1998 BioElectroMech and James R. Weeks.  Portions copyright IJG and");
   System.out.println("  Florian Raemy, LCAV.  See license.txt for details.");
   System.out.println("Visit BioElectroMech at www.obrador.ru.  Email James@obrador.ru.");
   System.exit(0);
 }
 public static void main(String args[]) {
   Image image = null;
   FileOutputStream dataOut = null;
   File file, outFile;
   JpegEncoder jpg;
   String string = "";
   int i, Quality = 80;
   // Check to see if the input file name has one of the extensions:
   // .tif, .gif, .jpg
   // If not, print the standard use info.
   if (args.length < 2)
     StandardUsage();
   if (!args[0].endsWith(".jpg") && !args[0].endsWith(".tif") && !args[0].endsWith(".gif"))
     StandardUsage();
   // First check to see if there is an OutputFile argument. If there isn"t
   // then name the file "InputFile".jpg
   // Second check to see if the .jpg extension is on the OutputFile argument.
   // If there isn"t one, add it.
   // Need to check for the existence of the output file. If it exists already,
   // rename the file with a # after the file name, then the .jpg extension.
   if (args.length < 3) {
     string = args[0].substring(0, args[0].lastIndexOf(".")) + ".jpg";
   } else {
     string = args[2];
     if (string.endsWith(".tif") || string.endsWith(".gif"))
       string = string.substring(0, string.lastIndexOf("."));
     if (!string.endsWith(".jpg"))
       string = string.concat(".jpg");
   }
   outFile = new File(string);
   i = 1;
   while (outFile.exists()) {
     outFile = new File(string.substring(0, string.lastIndexOf(".")) + (i++) + ".jpg");
     if (i > 100)
       System.exit(0);
   }
   file = new File(args[0]);
   if (file.exists()) {
     try {
       dataOut = new FileOutputStream(outFile);
     } catch (IOException e) {
     }
     try {
       Quality = Integer.parseInt(args[1]);
     } catch (NumberFormatException e) {
       StandardUsage();
     }
     image = Toolkit.getDefaultToolkit().getImage(args[0]);
     jpg = new JpegEncoder(image, Quality, dataOut);
     jpg.rupress();
     try {
       dataOut.close();
     } catch (IOException e) {
     }
   } else {
     System.out.println("I couldn"t find " + args[0] + ". Is it in another directory?");
   }
   System.exit(0);
 }

} // Version 1.0a // Copyright (C) 1998, James R. Weeks and BioElectroMech. // Visit BioElectroMech at www.obrador.ru. Email James@obrador.ru. // See license.txt for details about the allowed used of this software. // This software is based in part on the work of the Independent JPEG Group. // See IJGreadme.txt for details about the Independent JPEG Group"s license. // This encoder is inspired by the Java Jpeg encoder by Florian Raemy, // studwww.eurecom.fr/~raemy. // It borrows a great deal of code and structure from the Independent // Jpeg Group"s Jpeg 6a library, Copyright Thomas G. Lane. // See license.txt for details. /*

* JpegEncoder - The JPEG main program which performs a jpeg compression of an
* image.
*/

class JpegEncoder extends Frame {

 Thread runner;
 BufferedOutputStream outStream;
 Image image;
 JpegInfo JpegObj;
 Huffman Huf;
 DCT dct;
 int imageHeight, imageWidth;
 int Quality;
 int code;
 public static int[] jpegNaturalOrder = { 0, 1, 8, 16, 9, 2, 3, 10, 17, 24, 32, 25, 18, 11, 4, 5,
     12, 19, 26, 33, 40, 48, 41, 34, 27, 20, 13, 6, 7, 14, 21, 28, 35, 42, 49, 56, 57, 50, 43, 36,
     29, 22, 15, 23, 30, 37, 44, 51, 58, 59, 52, 45, 38, 31, 39, 46, 53, 60, 61, 54, 47, 55, 62,
     63, };
 public JpegEncoder(Image image, int quality, OutputStream out) {
   MediaTracker tracker = new MediaTracker(this);
   tracker.addImage(image, 0);
   try {
     tracker.waitForID(0);
   } catch (InterruptedException e) {
     // Got to do something?
   }
   /*
    * Quality of the image. 0 to 100 and from bad image quality, high
    * compression to good image quality low compression
    */
   Quality = quality;
   /*
    * Getting picture information It takes the Width, Height and RGB scans of
    * the image.
    */
   JpegObj = new JpegInfo(image);
   imageHeight = JpegObj.imageHeight;
   imageWidth = JpegObj.imageWidth;
   outStream = new BufferedOutputStream(out);
   dct = new DCT(Quality);
   Huf = new Huffman(imageWidth, imageHeight);
 }
 public void setQuality(int quality) {
   dct = new DCT(quality);
 }
 public int getQuality() {
   return Quality;
 }
 public void Compress() {
   WriteHeaders(outStream);
   WriteCompressedData(outStream);
   WriteEOI(outStream);
   try {
     outStream.flush();
   } catch (IOException e) {
     System.out.println("IO Error: " + e.getMessage());
   }
 }
 public void WriteCompressedData(BufferedOutputStream outStream) {
   int i, j, r, c, a, b;
   int comp, xpos, ypos, xblockoffset, yblockoffset;
   float inputArray[][];
   float dctArray1[][] = new float[8][8];
   double dctArray2[][] = new double[8][8];
   int dctArray3[] = new int[8 * 8];
   /*
    * This method controls the compression of the image. Starting at the upper
    * left of the image, it compresses 8x8 blocks of data until the entire
    * image has been compressed.
    */
   int lastDCvalue[] = new int[JpegObj.NumberOfComponents];
   // int zeroArray[] = new int[64]; // initialized to hold all zeros
   // int Width = 0, Height = 0;
   // int nothing = 0, not;
   int MinBlockWidth, MinBlockHeight;
   // This initial setting of MinBlockWidth and MinBlockHeight is done to
   // ensure they start with values larger than will actually be the case.
   MinBlockWidth = ((imageWidth % 8 != 0) ? (int) (Math.floor(imageWidth / 8.0) + 1) * 8
       : imageWidth);
   MinBlockHeight = ((imageHeight % 8 != 0) ? (int) (Math.floor(imageHeight / 8.0) + 1) * 8
       : imageHeight);
   for (comp = 0; comp < JpegObj.NumberOfComponents; comp++) {
     MinBlockWidth = Math.min(MinBlockWidth, JpegObj.BlockWidth[comp]);
     MinBlockHeight = Math.min(MinBlockHeight, JpegObj.BlockHeight[comp]);
   }
   xpos = 0;
   for (r = 0; r < MinBlockHeight; r++) {
     for (c = 0; c < MinBlockWidth; c++) {
       xpos = c * 8;
       ypos = r * 8;
       for (comp = 0; comp < JpegObj.NumberOfComponents; comp++) {
         // Width = JpegObj.BlockWidth[comp];
         // Height = JpegObj.BlockHeight[comp];
         inputArray = (float[][]) JpegObj.ruponents[comp];
         for (i = 0; i < JpegObj.VsampFactor[comp]; i++) {
           for (j = 0; j < JpegObj.HsampFactor[comp]; j++) {
             xblockoffset = j * 8;
             yblockoffset = i * 8;
             for (a = 0; a < 8; a++) {
               for (b = 0; b < 8; b++) {
                 // I believe this is where the dirty line at the bottom of
                 // the image is coming from.
                 // I need to do a check here to make sure I"m not reading past
                 // image data.
                 // This seems to not be a big issue right now. (04/04/98)
                 dctArray1[a][b] = inputArray[ypos + yblockoffset + a][xpos + xblockoffset + b];
               }
             }
             // The following code commented out because on some images this
             // technique
             // results in poor right and bottom borders.
             // if ((!JpegObj.lastColumnIsDummy[comp] || c < Width - 1) &&
             // (!JpegObj.lastRowIsDummy[comp] || r < Height - 1)) {
             dctArray2 = dct.forwardDCT(dctArray1);
             dctArray3 = dct.quantizeBlock(dctArray2, JpegObj.QtableNumber[comp]);
             // }
             // else {
             // zeroArray[0] = dctArray3[0];
             // zeroArray[0] = lastDCvalue[comp];
             // dctArray3 = zeroArray;
             // }
             Huf.HuffmanBlockEncoder(outStream, dctArray3, lastDCvalue[comp],
                 JpegObj.DCtableNumber[comp], JpegObj.ACtableNumber[comp]);
             lastDCvalue[comp] = dctArray3[0];
           }
         }
       }
     }
   }
   Huf.flushBuffer(outStream);
 }
 public void WriteEOI(BufferedOutputStream out) {
   byte[] EOI = { (byte) 0xFF, (byte) 0xD9 };
   WriteMarker(EOI, out);
 }
 public void WriteHeaders(BufferedOutputStream out) {
   int i, j, index, offset, length;
   int tempArray[];
   // the SOI marker
   byte[] SOI = { (byte) 0xFF, (byte) 0xD8 };
   WriteMarker(SOI, out);
   // The order of the following headers is quiet inconsequential.
   // the JFIF header
   byte JFIF[] = new byte[18];
   JFIF[0] = (byte) 0xff;
   JFIF[1] = (byte) 0xe0;
   JFIF[2] = (byte) 0x00;
   JFIF[3] = (byte) 0x10;
   JFIF[4] = (byte) 0x4a;
   JFIF[5] = (byte) 0x46;
   JFIF[6] = (byte) 0x49;
   JFIF[7] = (byte) 0x46;
   JFIF[8] = (byte) 0x00;
   JFIF[9] = (byte) 0x01;
   JFIF[10] = (byte) 0x00;
   JFIF[11] = (byte) 0x00;
   JFIF[12] = (byte) 0x00;
   JFIF[13] = (byte) 0x01;
   JFIF[14] = (byte) 0x00;
   JFIF[15] = (byte) 0x01;
   JFIF[16] = (byte) 0x00;
   JFIF[17] = (byte) 0x00;
   WriteArray(JFIF, out);
   // Comment Header
   String comment = "";
   comment = JpegObj.getComment();
   length = comment.length();
   byte COM[] = new byte[length + 4];
   COM[0] = (byte) 0xFF;
   COM[1] = (byte) 0xFE;
   COM[2] = (byte) ((length >> 8) & 0xFF);
   COM[3] = (byte) (length & 0xFF);
   java.lang.System.arraycopy(JpegObj.rument.getBytes(), 0, COM, 4, JpegObj.rument.length());
   WriteArray(COM, out);
   // The DQT header
   // 0 is the luminance index and 1 is the chrominance index
   byte DQT[] = new byte[134];
   DQT[0] = (byte) 0xFF;
   DQT[1] = (byte) 0xDB;
   DQT[2] = (byte) 0x00;
   DQT[3] = (byte) 0x84;
   offset = 4;
   for (i = 0; i < 2; i++) {
     DQT[offset++] = (byte) ((0 << 4) + i);
     tempArray = (int[]) dct.quantum[i];
     for (j = 0; j < 64; j++) {
       DQT[offset++] = (byte) tempArray[jpegNaturalOrder[j]];
     }
   }
   WriteArray(DQT, out);
   // Start of Frame Header
   byte SOF[] = new byte[19];
   SOF[0] = (byte) 0xFF;
   SOF[1] = (byte) 0xC0;
   SOF[2] = (byte) 0x00;
   SOF[3] = (byte) 17;
   SOF[4] = (byte) JpegObj.Precision;
   SOF[5] = (byte) ((JpegObj.imageHeight >> 8) & 0xFF);
   SOF[6] = (byte) ((JpegObj.imageHeight) & 0xFF);
   SOF[7] = (byte) ((JpegObj.imageWidth >> 8) & 0xFF);
   SOF[8] = (byte) ((JpegObj.imageWidth) & 0xFF);
   SOF[9] = (byte) JpegObj.NumberOfComponents;
   index = 10;
   for (i = 0; i < SOF[9]; i++) {
     SOF[index++] = (byte) JpegObj.rupID[i];
     SOF[index++] = (byte) ((JpegObj.HsampFactor[i] << 4) + JpegObj.VsampFactor[i]);
     SOF[index++] = (byte) JpegObj.QtableNumber[i];
   }
   WriteArray(SOF, out);
   // The DHT Header
   byte DHT1[], DHT2[], DHT3[], DHT4[];
   int bytes, temp, oldindex, intermediateindex;
   length = 2;
   index = 4;
   oldindex = 4;
   DHT1 = new byte[17];
   DHT4 = new byte[4];
   DHT4[0] = (byte) 0xFF;
   DHT4[1] = (byte) 0xC4;
   for (i = 0; i < 4; i++) {
     bytes = 0;
     DHT1[index++ - oldindex] = (byte) ((int[]) Huf.bits.elementAt(i))[0];
     for (j = 1; j < 17; j++) {
       temp = ((int[]) Huf.bits.elementAt(i))[j];
       DHT1[index++ - oldindex] = (byte) temp;
       bytes += temp;
     }
     intermediateindex = index;
     DHT2 = new byte[bytes];
     for (j = 0; j < bytes; j++) {
       DHT2[index++ - intermediateindex] = (byte) ((int[]) Huf.val.elementAt(i))[j];
     }
     DHT3 = new byte[index];
     java.lang.System.arraycopy(DHT4, 0, DHT3, 0, oldindex);
     java.lang.System.arraycopy(DHT1, 0, DHT3, oldindex, 17);
     java.lang.System.arraycopy(DHT2, 0, DHT3, oldindex + 17, bytes);
     DHT4 = DHT3;
     oldindex = index;
   }
   DHT4[2] = (byte) (((index - 2) >> 8) & 0xFF);
   DHT4[3] = (byte) ((index - 2) & 0xFF);
   WriteArray(DHT4, out);
   // Start of Scan Header
   byte SOS[] = new byte[14];
   SOS[0] = (byte) 0xFF;
   SOS[1] = (byte) 0xDA;
   SOS[2] = (byte) 0x00;
   SOS[3] = (byte) 12;
   SOS[4] = (byte) JpegObj.NumberOfComponents;
   index = 5;
   for (i = 0; i < SOS[4]; i++) {
     SOS[index++] = (byte) JpegObj.rupID[i];
     SOS[index++] = (byte) ((JpegObj.DCtableNumber[i] << 4) + JpegObj.ACtableNumber[i]);
   }
   SOS[index++] = (byte) JpegObj.Ss;
   SOS[index++] = (byte) JpegObj.Se;
   SOS[index++] = (byte) ((JpegObj.Ah << 4) + JpegObj.Al);
   WriteArray(SOS, out);
 }
 void WriteMarker(byte[] data, BufferedOutputStream out) {
   try {
     out.write(data, 0, 2);
   } catch (IOException e) {
     System.out.println("IO Error: " + e.getMessage());
   }
 }
 void WriteArray(byte[] data, BufferedOutputStream out) {
   int length;
   try {
     length = ((data[2] & 0xFF) << 8) + (data[3] & 0xFF) + 2;
     out.write(data, 0, length);
   } catch (IOException e) {
     System.out.println("IO Error: " + e.getMessage());
   }
 }

} // This class incorporates quality scaling as implemented in the JPEG-6a // library. /*

* DCT - A Java implementation of the Discreet Cosine Transform
*/

class DCT {

 /**
  * DCT Block Size - default 8
  */
 public int N = 8;
 /**
  * Image Quality (0-100) - default 80 (good image / good compression)
  */
 public int QUALITY = 80;
 public Object quantum[] = new Object[2];
 public Object Divisors[] = new Object[2];
 /**
  * Quantitization Matrix for luminace.
  */
 public int quantum_luminance[] = new int[N * N];
 public double DivisorsLuminance[] = new double[N * N];
 /**
  * Quantitization Matrix for chrominance.
  */
 public int quantum_chrominance[] = new int[N * N];
 public double DivisorsChrominance[] = new double[N * N];
 /**
  * Constructs a new DCT object. Initializes the cosine transform matrix these
  * are used when computing the DCT and it"s inverse. This also initializes the
  * run length counters and the ZigZag sequence. Note that the image quality
  * can be worse than 25 however the image will be extemely pixelated, usually
  * to a block size of N.
  * 
  * @param QUALITY
  *          The quality of the image (0 worst - 100 best)
  * 
  */
 public DCT(int QUALITY) {
   initMatrix(QUALITY);
 }
 /*
  * This method sets up the quantization matrix for luminance and chrominance
  * using the Quality parameter.
  */
 private void initMatrix(int quality) {
   double[] AANscaleFactor = { 1.0, 1.387039845, 1.306562965, 1.175875602, 1.0, 0.785694958,
       0.541196100, 0.275899379 };
   int i;
   int j;
   int index;
   int Quality;
   int temp;
   // converting quality setting to that specified in the jpeg_quality_scaling
   // method in the IJG Jpeg-6a C libraries
   Quality = quality;
   if (Quality <= 0)
     Quality = 1;
   if (Quality > 100)
     Quality = 100;
   if (Quality < 50)
     Quality = 5000 / Quality;
   else
     Quality = 200 - Quality * 2;
   // Creating the luminance matrix
   quantum_luminance[0] = 16;
   quantum_luminance[1] = 11;
   quantum_luminance[2] = 10;
   quantum_luminance[3] = 16;
   quantum_luminance[4] = 24;
   quantum_luminance[5] = 40;
   quantum_luminance[6] = 51;
   quantum_luminance[7] = 61;
   quantum_luminance[8] = 12;
   quantum_luminance[9] = 12;
   quantum_luminance[10] = 14;
   quantum_luminance[11] = 19;
   quantum_luminance[12] = 26;
   quantum_luminance[13] = 58;
   quantum_luminance[14] = 60;
   quantum_luminance[15] = 55;
   quantum_luminance[16] = 14;
   quantum_luminance[17] = 13;
   quantum_luminance[18] = 16;
   quantum_luminance[19] = 24;
   quantum_luminance[20] = 40;
   quantum_luminance[21] = 57;
   quantum_luminance[22] = 69;
   quantum_luminance[23] = 56;
   quantum_luminance[24] = 14;
   quantum_luminance[25] = 17;
   quantum_luminance[26] = 22;
   quantum_luminance[27] = 29;
   quantum_luminance[28] = 51;
   quantum_luminance[29] = 87;
   quantum_luminance[30] = 80;
   quantum_luminance[31] = 62;
   quantum_luminance[32] = 18;
   quantum_luminance[33] = 22;
   quantum_luminance[34] = 37;
   quantum_luminance[35] = 56;
   quantum_luminance[36] = 68;
   quantum_luminance[37] = 109;
   quantum_luminance[38] = 103;
   quantum_luminance[39] = 77;
   quantum_luminance[40] = 24;
   quantum_luminance[41] = 35;
   quantum_luminance[42] = 55;
   quantum_luminance[43] = 64;
   quantum_luminance[44] = 81;
   quantum_luminance[45] = 104;
   quantum_luminance[46] = 113;
   quantum_luminance[47] = 92;
   quantum_luminance[48] = 49;
   quantum_luminance[49] = 64;
   quantum_luminance[50] = 78;
   quantum_luminance[51] = 87;
   quantum_luminance[52] = 103;
   quantum_luminance[53] = 121;
   quantum_luminance[54] = 120;
   quantum_luminance[55] = 101;
   quantum_luminance[56] = 72;
   quantum_luminance[57] = 92;
   quantum_luminance[58] = 95;
   quantum_luminance[59] = 98;
   quantum_luminance[60] = 112;
   quantum_luminance[61] = 100;
   quantum_luminance[62] = 103;
   quantum_luminance[63] = 99;
   for (j = 0; j < 64; j++) {
     temp = (quantum_luminance[j] * Quality + 50) / 100;
     if (temp <= 0)
       temp = 1;
     if (temp > 255)
       temp = 255;
     quantum_luminance[j] = temp;
   }
   index = 0;
   for (i = 0; i < 8; i++) {
     for (j = 0; j < 8; j++) {
       // The divisors for the LL&M method (the slow integer method used in
       // jpeg 6a library). This method is currently (04/04/98) incompletely
       // implemented.
       // DivisorsLuminance[index] = ((double) quantum_luminance[index]) << 3;
       // The divisors for the AAN method (the float method used in jpeg 6a
       // library.
       DivisorsLuminance[index] = (1.0 / (quantum_luminance[index] * AANscaleFactor[i]
           * AANscaleFactor[j] * 8.0));
       index++;
     }
   }
   // Creating the chrominance matrix
   quantum_chrominance[0] = 17;
   quantum_chrominance[1] = 18;
   quantum_chrominance[2] = 24;
   quantum_chrominance[3] = 47;
   quantum_chrominance[4] = 99;
   quantum_chrominance[5] = 99;
   quantum_chrominance[6] = 99;
   quantum_chrominance[7] = 99;
   quantum_chrominance[8] = 18;
   quantum_chrominance[9] = 21;
   quantum_chrominance[10] = 26;
   quantum_chrominance[11] = 66;
   quantum_chrominance[12] = 99;
   quantum_chrominance[13] = 99;
   quantum_chrominance[14] = 99;
   quantum_chrominance[15] = 99;
   quantum_chrominance[16] = 24;
   quantum_chrominance[17] = 26;
   quantum_chrominance[18] = 56;
   quantum_chrominance[19] = 99;
   quantum_chrominance[20] = 99;
   quantum_chrominance[21] = 99;
   quantum_chrominance[22] = 99;
   quantum_chrominance[23] = 99;
   quantum_chrominance[24] = 47;
   quantum_chrominance[25] = 66;
   quantum_chrominance[26] = 99;
   quantum_chrominance[27] = 99;
   quantum_chrominance[28] = 99;
   quantum_chrominance[29] = 99;
   quantum_chrominance[30] = 99;
   quantum_chrominance[31] = 99;
   quantum_chrominance[32] = 99;
   quantum_chrominance[33] = 99;
   quantum_chrominance[34] = 99;
   quantum_chrominance[35] = 99;
   quantum_chrominance[36] = 99;
   quantum_chrominance[37] = 99;
   quantum_chrominance[38] = 99;
   quantum_chrominance[39] = 99;
   quantum_chrominance[40] = 99;
   quantum_chrominance[41] = 99;
   quantum_chrominance[42] = 99;
   quantum_chrominance[43] = 99;
   quantum_chrominance[44] = 99;
   quantum_chrominance[45] = 99;
   quantum_chrominance[46] = 99;
   quantum_chrominance[47] = 99;
   quantum_chrominance[48] = 99;
   quantum_chrominance[49] = 99;
   quantum_chrominance[50] = 99;
   quantum_chrominance[51] = 99;
   quantum_chrominance[52] = 99;
   quantum_chrominance[53] = 99;
   quantum_chrominance[54] = 99;
   quantum_chrominance[55] = 99;
   quantum_chrominance[56] = 99;
   quantum_chrominance[57] = 99;
   quantum_chrominance[58] = 99;
   quantum_chrominance[59] = 99;
   quantum_chrominance[60] = 99;
   quantum_chrominance[61] = 99;
   quantum_chrominance[62] = 99;
   quantum_chrominance[63] = 99;
   for (j = 0; j < 64; j++) {
     temp = (quantum_chrominance[j] * Quality + 50) / 100;
     if (temp <= 0)
       temp = 1;
     if (temp >= 255)
       temp = 255;
     quantum_chrominance[j] = temp;
   }
   index = 0;
   for (i = 0; i < 8; i++) {
     for (j = 0; j < 8; j++) {
       // The divisors for the LL&M method (the slow integer method used in
       // jpeg 6a library). This method is currently (04/04/98) incompletely
       // implemented.
       // DivisorsChrominance[index] = ((double) quantum_chrominance[index]) <<
       // 3;
       // The divisors for the AAN method (the float method used in jpeg 6a
       // library.
       DivisorsChrominance[index] = 1.0 / (quantum_chrominance[index] * AANscaleFactor[i]
           * AANscaleFactor[j] * 8.0);
       index++;
     }
   }
   // quantum and Divisors are objects used to hold the appropriate matices
   quantum[0] = quantum_luminance;
   Divisors[0] = DivisorsLuminance;
   quantum[1] = quantum_chrominance;
   Divisors[1] = DivisorsChrominance;
 }
 /*
  * This method preforms forward DCT on a block of image data using the literal
  * method specified for a 2-D Discrete Cosine Transform. It is included as a
  * curiosity and can give you an idea of the difference in the compression
  * result (the resulting image quality) by comparing its output to the output
  * of the AAN method below. It is ridiculously inefficient.
  */
 // For now the final output is unusable. The associated quantization step
 // needs some tweaking. If you get this part working, please let me know.
 public double[][] forwardDCTExtreme(float input[][]) {
   double output[][] = new double[N][N];
   int v, u, x, y;
   for (v = 0; v < 8; v++) {
     for (u = 0; u < 8; u++) {
       for (x = 0; x < 8; x++) {
         for (y = 0; y < 8; y++) {
           output[v][u] += input[x][y]
               * Math.cos(((double) (2 * x + 1) * (double) u * Math.PI) / 16)
               * Math.cos(((double) (2 * y + 1) * (double) v * Math.PI) / 16);
         }
       }
       output[v][u] *= (0.25) * ((u == 0) ? (1.0 / Math.sqrt(2)) : (double) 1.0)
           * ((v == 0) ? (1.0 / Math.sqrt(2)) : (double) 1.0);
     }
   }
   return output;
 }
 /*
  * This method preforms a DCT on a block of image data using the AAN method as
  * implemented in the IJG Jpeg-6a library.
  */
 public double[][] forwardDCT(float input[][]) {
   double output[][] = new double[N][N];
   double tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7;
   double tmp10, tmp11, tmp12, tmp13;
   double z1, z2, z3, z4, z5, z11, z13;
   int i;
   int j;
   // Subtracts 128 from the input values
   for (i = 0; i < 8; i++) {
     for (j = 0; j < 8; j++) {
       output[i][j] = (input[i][j] - 128.0);
       // input[i][j] -= 128;
     }
   }
   for (i = 0; i < 8; i++) {
     tmp0 = output[i][0] + output[i][7];
     tmp7 = output[i][0] - output[i][7];
     tmp1 = output[i][1] + output[i][6];
     tmp6 = output[i][1] - output[i][6];
     tmp2 = output[i][2] + output[i][5];
     tmp5 = output[i][2] - output[i][5];
     tmp3 = output[i][3] + output[i][4];
     tmp4 = output[i][3] - output[i][4];
     tmp10 = tmp0 + tmp3;
     tmp13 = tmp0 - tmp3;
     tmp11 = tmp1 + tmp2;
     tmp12 = tmp1 - tmp2;
     output[i][0] = tmp10 + tmp11;
     output[i][4] = tmp10 - tmp11;
     z1 = (tmp12 + tmp13) * 0.707106781;
     output[i][2] = tmp13 + z1;
     output[i][6] = tmp13 - z1;
     tmp10 = tmp4 + tmp5;
     tmp11 = tmp5 + tmp6;
     tmp12 = tmp6 + tmp7;
     z5 = (tmp10 - tmp12) * 0.382683433;
     z2 = 0.541196100 * tmp10 + z5;
     z4 = 1.306562965 * tmp12 + z5;
     z3 = tmp11 * 0.707106781;
     z11 = tmp7 + z3;
     z13 = tmp7 - z3;
     output[i][5] = z13 + z2;
     output[i][3] = z13 - z2;
     output[i][1] = z11 + z4;
     output[i][7] = z11 - z4;
   }
   for (i = 0; i < 8; i++) {
     tmp0 = output[0][i] + output[7][i];
     tmp7 = output[0][i] - output[7][i];
     tmp1 = output[1][i] + output[6][i];
     tmp6 = output[1][i] - output[6][i];
     tmp2 = output[2][i] + output[5][i];
     tmp5 = output[2][i] - output[5][i];
     tmp3 = output[3][i] + output[4][i];
     tmp4 = output[3][i] - output[4][i];
     tmp10 = tmp0 + tmp3;
     tmp13 = tmp0 - tmp3;
     tmp11 = tmp1 + tmp2;
     tmp12 = tmp1 - tmp2;
     output[0][i] = tmp10 + tmp11;
     output[4][i] = tmp10 - tmp11;
     z1 = (tmp12 + tmp13) * 0.707106781;
     output[2][i] = tmp13 + z1;
     output[6][i] = tmp13 - z1;
     tmp10 = tmp4 + tmp5;
     tmp11 = tmp5 + tmp6;
     tmp12 = tmp6 + tmp7;
     z5 = (tmp10 - tmp12) * 0.382683433;
     z2 = 0.541196100 * tmp10 + z5;
     z4 = 1.306562965 * tmp12 + z5;
     z3 = tmp11 * 0.707106781;
     z11 = tmp7 + z3;
     z13 = tmp7 - z3;
     output[5][i] = z13 + z2;
     output[3][i] = z13 - z2;
     output[1][i] = z11 + z4;
     output[7][i] = z11 - z4;
   }
   return output;
 }
 /*
  * This method quantitizes data and rounds it to the nearest integer.
  */
 public int[] quantizeBlock(double inputData[][], int code) {
   int outputData[] = new int[N * N];
   int i, j;
   int index;
   index = 0;
   for (i = 0; i < 8; i++) {
     for (j = 0; j < 8; j++) {
       // The second line results in significantly better compression.
       outputData[index] = (int) (Math.round(inputData[i][j]
           * (((double[]) (Divisors[code]))[index])));
       // outputData[index] = (int)(((inputData[i][j] * (((double[])
       // (Divisors[code]))[index])) + 16384.5) -16384);
       index++;
     }
   }
   return outputData;
 }
 /*
  * This is the method for quantizing a block DCT"ed with forwardDCTExtreme
  * This method quantitizes data and rounds it to the nearest integer.
  */
 public int[] quantizeBlockExtreme(double inputData[][], int code) {
   int outputData[] = new int[N * N];
   int i, j;
   int index;
   index = 0;
   for (i = 0; i < 8; i++) {
     for (j = 0; j < 8; j++) {
       outputData[index] = (int) (Math.round(inputData[i][j] / (((int[]) (quantum[code]))[index])));
       index++;
     }
   }
   return outputData;
 }

} // This class was modified by James R. Weeks on 3/27/98. // It now incorporates Huffman table derivation as in the C jpeg library // from the IJG, Jpeg-6a. class Huffman {

 int bufferPutBits, bufferPutBuffer;
 public int ImageHeight;
 public int ImageWidth;
 public int DC_matrix0[][];
 public int AC_matrix0[][];
 public int DC_matrix1[][];
 public int AC_matrix1[][];
 public Object DC_matrix[];
 public Object AC_matrix[];
 public int code;
 public int NumOfDCTables;
 public int NumOfACTables;
 public int[] bitsDCluminance = { 0x00, 0, 1, 5, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0 };
 public int[] valDCluminance = { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 };
 public int[] bitsDCchrominance = { 0x01, 0, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0 };
 public int[] valDCchrominance = { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 };
 public int[] bitsACluminance = { 0x10, 0, 2, 1, 3, 3, 2, 4, 3, 5, 5, 4, 4, 0, 0, 1, 0x7d };
 public int[] valACluminance = { 0x01, 0x02, 0x03, 0x00, 0x04, 0x11, 0x05, 0x12, 0x21, 0x31, 0x41,
     0x06, 0x13, 0x51, 0x61, 0x07, 0x22, 0x71, 0x14, 0x32, 0x81, 0x91, 0xa1, 0x08, 0x23, 0x42,
     0xb1, 0xc1, 0x15, 0x52, 0xd1, 0xf0, 0x24, 0x33, 0x62, 0x72, 0x82, 0x09, 0x0a, 0x16, 0x17,
     0x18, 0x19, 0x1a, 0x25, 0x26, 0x27, 0x28, 0x29, 0x2a, 0x34, 0x35, 0x36, 0x37, 0x38, 0x39,
     0x3a, 0x43, 0x44, 0x45, 0x46, 0x47, 0x48, 0x49, 0x4a, 0x53, 0x54, 0x55, 0x56, 0x57, 0x58,
     0x59, 0x5a, 0x63, 0x64, 0x65, 0x66, 0x67, 0x68, 0x69, 0x6a, 0x73, 0x74, 0x75, 0x76, 0x77,
     0x78, 0x79, 0x7a, 0x83, 0x84, 0x85, 0x86, 0x87, 0x88, 0x89, 0x8a, 0x92, 0x93, 0x94, 0x95,
     0x96, 0x97, 0x98, 0x99, 0x9a, 0xa2, 0xa3, 0xa4, 0xa5, 0xa6, 0xa7, 0xa8, 0xa9, 0xaa, 0xb2,
     0xb3, 0xb4, 0xb5, 0xb6, 0xb7, 0xb8, 0xb9, 0xba, 0xc2, 0xc3, 0xc4, 0xc5, 0xc6, 0xc7, 0xc8,
     0xc9, 0xca, 0xd2, 0xd3, 0xd4, 0xd5, 0xd6, 0xd7, 0xd8, 0xd9, 0xda, 0xe1, 0xe2, 0xe3, 0xe4,
     0xe5, 0xe6, 0xe7, 0xe8, 0xe9, 0xea, 0xf1, 0xf2, 0xf3, 0xf4, 0xf5, 0xf6, 0xf7, 0xf8, 0xf9,
     0xfa };
 public int[] bitsACchrominance = { 0x11, 0, 2, 1, 2, 4, 4, 3, 4, 7, 5, 4, 4, 0, 1, 2, 0x77 };
 public int[] valACchrominance = { 0x00, 0x01, 0x02, 0x03, 0x11, 0x04, 0x05, 0x21, 0x31, 0x06,
     0x12, 0x41, 0x51, 0x07, 0x61, 0x71, 0x13, 0x22, 0x32, 0x81, 0x08, 0x14, 0x42, 0x91, 0xa1,
     0xb1, 0xc1, 0x09, 0x23, 0x33, 0x52, 0xf0, 0x15, 0x62, 0x72, 0xd1, 0x0a, 0x16, 0x24, 0x34,
     0xe1, 0x25, 0xf1, 0x17, 0x18, 0x19, 0x1a, 0x26, 0x27, 0x28, 0x29, 0x2a, 0x35, 0x36, 0x37,
     0x38, 0x39, 0x3a, 0x43, 0x44, 0x45, 0x46, 0x47, 0x48, 0x49, 0x4a, 0x53, 0x54, 0x55, 0x56,
     0x57, 0x58, 0x59, 0x5a, 0x63, 0x64, 0x65, 0x66, 0x67, 0x68, 0x69, 0x6a, 0x73, 0x74, 0x75,
     0x76, 0x77, 0x78, 0x79, 0x7a, 0x82, 0x83, 0x84, 0x85, 0x86, 0x87, 0x88, 0x89, 0x8a, 0x92,
     0x93, 0x94, 0x95, 0x96, 0x97, 0x98, 0x99, 0x9a, 0xa2, 0xa3, 0xa4, 0xa5, 0xa6, 0xa7, 0xa8,
     0xa9, 0xaa, 0xb2, 0xb3, 0xb4, 0xb5, 0xb6, 0xb7, 0xb8, 0xb9, 0xba, 0xc2, 0xc3, 0xc4, 0xc5,
     0xc6, 0xc7, 0xc8, 0xc9, 0xca, 0xd2, 0xd3, 0xd4, 0xd5, 0xd6, 0xd7, 0xd8, 0xd9, 0xda, 0xe2,
     0xe3, 0xe4, 0xe5, 0xe6, 0xe7, 0xe8, 0xe9, 0xea, 0xf2, 0xf3, 0xf4, 0xf5, 0xf6, 0xf7, 0xf8,
     0xf9, 0xfa };
 public Vector bits;
 public Vector val;
 /*
  * jpegNaturalOrder[i] is the natural-order position of the i"th element of
  * zigzag order.
  */
 public static int[] jpegNaturalOrder = { 0, 1, 8, 16, 9, 2, 3, 10, 17, 24, 32, 25, 18, 11, 4, 5,
     12, 19, 26, 33, 40, 48, 41, 34, 27, 20, 13, 6, 7, 14, 21, 28, 35, 42, 49, 56, 57, 50, 43, 36,
     29, 22, 15, 23, 30, 37, 44, 51, 58, 59, 52, 45, 38, 31, 39, 46, 53, 60, 61, 54, 47, 55, 62,
     63, };
 /*
  * The Huffman class constructor
  */
 public Huffman(int Width, int Height) {
   bits = new Vector();
   bits.addElement(bitsDCluminance);
   bits.addElement(bitsACluminance);
   bits.addElement(bitsDCchrominance);
   bits.addElement(bitsACchrominance);
   val = new Vector();
   val.addElement(valDCluminance);
   val.addElement(valACluminance);
   val.addElement(valDCchrominance);
   val.addElement(valACchrominance);
   initHuf();
   ImageWidth = Width;
   ImageHeight = Height;
 }
 /**
  * HuffmanBlockEncoder run length encodes and Huffman encodes the quantized
  * data.
  * 
  * @param outStream
  * @param zigzag
  * @param prec
  * @param DCcode
  * @param ACcode
  */
 public void HuffmanBlockEncoder(BufferedOutputStream outStream, int zigzag[], int prec,
     int DCcode, int ACcode) {
   int temp, temp2, nbits, k, r, i;
   NumOfDCTables = 2;
   NumOfACTables = 2;
   // The DC portion
   temp = temp2 = zigzag[0] - prec;
   if (temp < 0) {
     temp = -temp;
     temp2--;
   }
   nbits = 0;
   while (temp != 0) {
     nbits++;
     temp >>= 1;
   }
   // if (nbits > 11) nbits = 11;
   bufferIt(outStream, ((int[][]) DC_matrix[DCcode])[nbits][0],
       ((int[][]) DC_matrix[DCcode])[nbits][1]);
   // The arguments in bufferIt are code and size.
   if (nbits != 0) {
     bufferIt(outStream, temp2, nbits);
   }
   // The AC portion
   r = 0;
   for (k = 1; k < 64; k++) {
     if ((temp = zigzag[jpegNaturalOrder[k]]) == 0) {
       r++;
     } else {
       while (r > 15) {
         bufferIt(outStream, ((int[][]) AC_matrix[ACcode])[0xF0][0],
             ((int[][]) AC_matrix[ACcode])[0xF0][1]);
         r -= 16;
       }
       temp2 = temp;
       if (temp < 0) {
         temp = -temp;
         temp2--;
       }
       nbits = 1;
       while ((temp >>= 1) != 0) {
         nbits++;
       }
       i = (r << 4) + nbits;
       bufferIt(outStream, ((int[][]) AC_matrix[ACcode])[i][0],
           ((int[][]) AC_matrix[ACcode])[i][1]);
       bufferIt(outStream, temp2, nbits);
       r = 0;
     }
   }
   if (r > 0) {
     bufferIt(outStream, ((int[][]) AC_matrix[ACcode])[0][0], ((int[][]) AC_matrix[ACcode])[0][1]);
   }
 }
 // Uses an integer long (32 bits) buffer to store the Huffman encoded bits
 // and sends them to outStream by the byte.
 void bufferIt(BufferedOutputStream outStream, int code, int size) {
   int PutBuffer = code;
   int PutBits = bufferPutBits;
   PutBuffer &= (1 << size) - 1;
   PutBits += size;
   PutBuffer <<= 24 - PutBits;
   PutBuffer |= bufferPutBuffer;
   while (PutBits >= 8) {
     int c = ((PutBuffer >> 16) & 0xFF);
     try {
       outStream.write(c);
     } catch (IOException e) {
       System.out.println("IO Error: " + e.getMessage());
     }
     if (c == 0xFF) {
       try {
         outStream.write(0);
       } catch (IOException e) {
         System.out.println("IO Error: " + e.getMessage());
       }
     }
     PutBuffer <<= 8;
     PutBits -= 8;
   }
   bufferPutBuffer = PutBuffer;
   bufferPutBits = PutBits;
 }
 void flushBuffer(BufferedOutputStream outStream) {
   int PutBuffer = bufferPutBuffer;
   int PutBits = bufferPutBits;
   while (PutBits >= 8) {
     int c = ((PutBuffer >> 16) & 0xFF);
     try {
       outStream.write(c);
     } catch (IOException e) {
       System.out.println("IO Error: " + e.getMessage());
     }
     if (c == 0xFF) {
       try {
         outStream.write(0);
       } catch (IOException e) {
         System.out.println("IO Error: " + e.getMessage());
       }
     }
     PutBuffer <<= 8;
     PutBits -= 8;
   }
   if (PutBits > 0) {
     int c = ((PutBuffer >> 16) & 0xFF);
     try {
       outStream.write(c);
     } catch (IOException e) {
       System.out.println("IO Error: " + e.getMessage());
     }
   }
 }
 /*
  * Initialisation of the Huffman codes for Luminance and Chrominance. This
  * code results in the same tables created in the IJG Jpeg-6a library.
  */
 public void initHuf() {
   DC_matrix0 = new int[12][2];
   DC_matrix1 = new int[12][2];
   AC_matrix0 = new int[255][2];
   AC_matrix1 = new int[255][2];
   DC_matrix = new Object[2];
   AC_matrix = new Object[2];
   int p, l, i, lastp, si, code;
   int[] huffsize = new int[257];
   int[] huffcode = new int[257];
   /*
    * init of the DC values for the chrominance [][0] is the code [][1] is the
    * number of bit
    */
   p = 0;
   for (l = 1; l <= 16; l++) {
     for (i = 1; i <= bitsDCchrominance[l]; i++) {
       huffsize[p++] = l;
     }
   }
   huffsize[p] = 0;
   lastp = p;
   code = 0;
   si = huffsize[0];
   p = 0;
   while (huffsize[p] != 0) {
     while (huffsize[p] == si) {
       huffcode[p++] = code;
       code++;
     }
     code <<= 1;
     si++;
   }
   for (p = 0; p < lastp; p++) {
     DC_matrix1[valDCchrominance[p]][0] = huffcode[p];
     DC_matrix1[valDCchrominance[p]][1] = huffsize[p];
   }
   /*
    * Init of the AC hufmann code for the chrominance matrix [][][0] is the
    * code & matrix[][][1] is the number of bit needed
    */
   p = 0;
   for (l = 1; l <= 16; l++) {
     for (i = 1; i <= bitsACchrominance[l]; i++) {
       huffsize[p++] = l;
     }
   }
   huffsize[p] = 0;
   lastp = p;
   code = 0;
   si = huffsize[0];
   p = 0;
   while (huffsize[p] != 0) {
     while (huffsize[p] == si) {
       huffcode[p++] = code;
       code++;
     }
     code <<= 1;
     si++;
   }
   for (p = 0; p < lastp; p++) {
     AC_matrix1[valACchrominance[p]][0] = huffcode[p];
     AC_matrix1[valACchrominance[p]][1] = huffsize[p];
   }
   /*
    * init of the DC values for the luminance [][0] is the code [][1] is the
    * number of bit
    */
   p = 0;
   for (l = 1; l <= 16; l++) {
     for (i = 1; i <= bitsDCluminance[l]; i++) {
       huffsize[p++] = l;
     }
   }
   huffsize[p] = 0;
   lastp = p;
   code = 0;
   si = huffsize[0];
   p = 0;
   while (huffsize[p] != 0) {
     while (huffsize[p] == si) {
       huffcode[p++] = code;
       code++;
     }
     code <<= 1;
     si++;
   }
   for (p = 0; p < lastp; p++) {
     DC_matrix0[valDCluminance[p]][0] = huffcode[p];
     DC_matrix0[valDCluminance[p]][1] = huffsize[p];
   }
   /*
    * Init of the AC hufmann code for luminance matrix [][][0] is the code &
    * matrix[][][1] is the number of bit
    */
   p = 0;
   for (l = 1; l <= 16; l++) {
     for (i = 1; i <= bitsACluminance[l]; i++) {
       huffsize[p++] = l;
     }
   }
   huffsize[p] = 0;
   lastp = p;
   code = 0;
   si = huffsize[0];
   p = 0;
   while (huffsize[p] != 0) {
     while (huffsize[p] == si) {
       huffcode[p++] = code;
       code++;
     }
     code <<= 1;
     si++;
   }
   for (int q = 0; q < lastp; q++) {
     AC_matrix0[valACluminance[q]][0] = huffcode[q];
     AC_matrix0[valACluminance[q]][1] = huffsize[q];
   }
   DC_matrix[0] = DC_matrix0;
   DC_matrix[1] = DC_matrix1;
   AC_matrix[0] = AC_matrix0;
   AC_matrix[1] = AC_matrix1;
 }

} /*

* JpegInfo - Given an image, sets default information about it and divides it
* into its constituant components, downsizing those that need to be.
*/

class JpegInfo {

 String Comment;
 public Image imageobj;
 public int imageHeight;
 public int imageWidth;
 public int BlockWidth[];
 public int BlockHeight[];
 // the following are set as the default
 public int Precision = 8;
 public int NumberOfComponents = 3;
 public Object Components[];
 public int[] CompID = { 1, 2, 3 };
 public int[] HsampFactor = { 1, 1, 1 };
 public int[] VsampFactor = { 1, 1, 1 };
 public int[] QtableNumber = { 0, 1, 1 };
 public int[] DCtableNumber = { 0, 1, 1 };
 public int[] ACtableNumber = { 0, 1, 1 };
 public boolean[] lastColumnIsDummy = { false, false, false };
 public boolean[] lastRowIsDummy = { false, false, false };
 public int Ss = 0;
 public int Se = 63;
 public int Ah = 0;
 public int Al = 0;
 public int compWidth[], compHeight[];
 public int MaxHsampFactor;
 public int MaxVsampFactor;
 public JpegInfo(Image image) {
   Components = new Object[NumberOfComponents];
   compWidth = new int[NumberOfComponents];
   compHeight = new int[NumberOfComponents];
   BlockWidth = new int[NumberOfComponents];
   BlockHeight = new int[NumberOfComponents];
   imageobj = image;
   imageWidth = image.getWidth(null);
   imageHeight = image.getHeight(null);
   Comment = "JPEG Encoder Copyright 1998, James R. Weeks and BioElectroMech.  ";
   getYCCArray();
 }
 public void setComment(String comment) {
   Comment.concat(comment);
 }
 public String getComment() {
   return Comment;
 }
 /*
  * This method creates and fills three arrays, Y, Cb, and Cr using the input
  * image.
  */
 private void getYCCArray() {
   int values[] = new int[imageWidth * imageHeight];
   int r, g, b, y, x;
   // In order to minimize the chance that grabPixels will throw an exception
   // it may be necessary to grab some pixels every few scanlines and process
   // those before going for more. The time expense may be prohibitive.
   // However, for a situation where memory overhead is a concern, this may be
   // the only choice.
   PixelGrabber grabber = new PixelGrabber(imageobj.getSource(), 0, 0, imageWidth, imageHeight,
       values, 0, imageWidth);
   MaxHsampFactor = 1;
   MaxVsampFactor = 1;
   for (y = 0; y < NumberOfComponents; y++) {
     MaxHsampFactor = Math.max(MaxHsampFactor, HsampFactor[y]);
     MaxVsampFactor = Math.max(MaxVsampFactor, VsampFactor[y]);
   }
   for (y = 0; y < NumberOfComponents; y++) {
     compWidth[y] = (((imageWidth % 8 != 0) ? ((int) Math.ceil(imageWidth / 8.0)) * 8 : imageWidth) / MaxHsampFactor)
         * HsampFactor[y];
     if (compWidth[y] != ((imageWidth / MaxHsampFactor) * HsampFactor[y])) {
       lastColumnIsDummy[y] = true;
     }
     // results in a multiple of 8 for compWidth
     // this will make the rest of the program fail for the unlikely
     // event that someone tries to compress an 16 x 16 pixel image
     // which would of course be worse than pointless
     BlockWidth[y] = (int) Math.ceil(compWidth[y] / 8.0);
     compHeight[y] = (((imageHeight % 8 != 0) ? ((int) Math.ceil(imageHeight / 8.0)) * 8
         : imageHeight) / MaxVsampFactor)
         * VsampFactor[y];
     if (compHeight[y] != ((imageHeight / MaxVsampFactor) * VsampFactor[y])) {
       lastRowIsDummy[y] = true;
     }
     BlockHeight[y] = (int) Math.ceil(compHeight[y] / 8.0);
   }
   try {
     if (grabber.grabPixels() != true) {
       try {
         throw new AWTException("Grabber returned false: " + grabber.status());
       } catch (Exception e) {
       }
     }
   } catch (InterruptedException e) {
   }
   float Y[][] = new float[compHeight[0]][compWidth[0]];
   float Cr1[][] = new float[compHeight[0]][compWidth[0]];
   float Cb1[][] = new float[compHeight[0]][compWidth[0]];
   // float Cb2[][] = new float[compHeight[1]][compWidth[1]];
   // float Cr2[][] = new float[compHeight[2]][compWidth[2]];
   int index = 0;
   for (y = 0; y < imageHeight; ++y) {
     for (x = 0; x < imageWidth; ++x) {
       r = ((values[index] >> 16) & 0xff);
       g = ((values[index] >> 8) & 0xff);
       b = (values[index] & 0xff);
       // The following three lines are a more correct color conversion but
       // the current conversion technique is sufficient and results in a
       // higher
       // compression rate.
       // Y[y][x] = 16 + (float)(0.8588*(0.299 * (float)r + 0.587 * (float)g +
       // 0.114 * (float)b ));
       // Cb1[y][x] = 128 + (float)(0.8784*(-0.16874 * (float)r - 0.33126 *
       // (float)g + 0.5 * (float)b));
       // Cr1[y][x] = 128 + (float)(0.8784*(0.5 * (float)r - 0.41869 * (float)g
       // - 0.08131 * (float)b));
       Y[y][x] = (float) ((0.299 * r + 0.587 * g + 0.114 * b));
       Cb1[y][x] = 128 + (float) ((-0.16874 * r - 0.33126 * g + 0.5 * b));
       Cr1[y][x] = 128 + (float) ((0.5 * r - 0.41869 * g - 0.08131 * b));
       index++;
     }
   }
   // Need a way to set the H and V sample factors before allowing
   // downsampling.
   // For now (04/04/98) downsampling must be hard coded.
   // Until a better downsampler is implemented, this will not be done.
   // Downsampling is currently supported. The downsampling method here
   // is a simple box filter.
   Components[0] = Y;
   // Cb2 = DownSample(Cb1, 1);
   Components[1] = Cb1;
   // Cr2 = DownSample(Cr1, 2);
   Components[2] = Cr1;
 }
 float[][] DownSample(float[][] C, int comp) {
   int inrow, incol;
   int outrow, outcol;
   float output[][];
   int bias;
   inrow = 0;
   incol = 0;
   output = new float[compHeight[comp]][compWidth[comp]];
   for (outrow = 0; outrow < compHeight[comp]; outrow++) {
     bias = 1;
     for (outcol = 0; outcol < compWidth[comp]; outcol++) {
       output[outrow][outcol] = (C[inrow][incol++] + C[inrow++][incol--] + C[inrow][incol++]
           + C[inrow--][incol++] + bias)
           / (float) 4.0;
       bias ^= 3;
     }
     inrow += 2;
     incol = 0;
   }
   return output;
 }

}


 </source>   



Rescale JPG

<source lang="java"> import java.awt.Graphics2D; import java.awt.geom.AffineTransform; import java.awt.image.BufferedImage; import java.io.File; import javax.imageio.ImageIO; public class Main {

 public static void main(String[] args) throws Exception {
   BufferedImage bufferedImage = ImageIO.read(new File("a.jpg"));
   BufferedImage destinationBufferedImage = new BufferedImage(100, 100, BufferedImage.TYPE_INT_RGB);
   Graphics2D g = destinationBufferedImage.createGraphics();
   AffineTransform at = AffineTransform.getScaleInstance(2, 2);
   g.drawRenderedImage(bufferedImage, at);
   ImageIO.write(destinationBufferedImage, "JPG", new File("b.jpg"));
 }

}


 </source>   



Takes a list of JPEG image files and convert them into a QuickTime movie.

<source lang="java">

/*

* @(#)JpegImagesToMovie.java   1.3 01/03/13
*
* Copyright (c) 1999-2001 Sun Microsystems, Inc. All Rights Reserved.
*
* Sun grants you ("Licensee") a non-exclusive, royalty free, license to use,
* modify and redistribute this software in source and binary code form,
* provided that i) this copyright notice and license appear on all copies of
* the software; and ii) Licensee does not utilize the software in a manner
* which is disparaging to Sun.
*
* This software is provided "AS IS," without a warranty of any kind. ALL
* EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES, INCLUDING ANY
* IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR
* NON-INFRINGEMENT, ARE HEREBY EXCLUDED. SUN AND ITS LICENSORS SHALL NOT BE
* LIABLE FOR ANY DAMAGES SUFFERED BY LICENSEE AS A RESULT OF USING, MODIFYING
* OR DISTRIBUTING THE SOFTWARE OR ITS DERIVATIVES. IN NO EVENT WILL SUN OR ITS
* LICENSORS BE LIABLE FOR ANY LOST REVENUE, PROFIT OR DATA, OR FOR DIRECT,
* INDIRECT, SPECIAL, CONSEQUENTIAL, INCIDENTAL OR PUNITIVE DAMAGES, HOWEVER
* CAUSED AND REGARDLESS OF THE THEORY OF LIABILITY, ARISING OUT OF THE USE OF
* OR INABILITY TO USE SOFTWARE, EVEN IF SUN HAS BEEN ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGES.
*
* This software is not designed or intended for use in on-line control of
* aircraft, air traffic, aircraft navigation or aircraft communications; or in
* the design, construction, operation or maintenance of any nuclear
* facility. Licensee represents and warrants that it will not use or
* redistribute the Software for such purposes.
*/

import java.io.*; import java.util.*; import java.awt.Dimension; import javax.media.*; import javax.media.control.*; import javax.media.protocol.*; import javax.media.protocol.DataSource; import javax.media.datasink.*; import javax.media.format.VideoFormat;

/**

* This program takes a list of JPEG image files and convert them into
* a QuickTime movie.
*/

public class JpegImagesToMovie implements ControllerListener, DataSinkListener {

   public boolean doIt(int width, int height, int frameRate, Vector inFiles, MediaLocator outML) {
   ImageDataSource ids = new ImageDataSource(width, height, frameRate, inFiles);
   Processor p;
   try {
       System.err.println("- create processor for the image datasource ...");
       p = Manager.createProcessor(ids);
   } catch (Exception e) {
       System.err.println("Yikes!  Cannot create a processor from the data source.");
       return false;
   }
   p.addControllerListener(this);
   // Put the Processor into configured state so we can set
   // some processing options on the processor.
   p.configure();
   if (!waitForState(p, p.Configured)) {
       System.err.println("Failed to configure the processor.");
       return false;
   }
   // Set the output content descriptor to QuickTime. 
   p.setContentDescriptor(new ContentDescriptor(FileTypeDescriptor.QUICKTIME));
   // Query for the processor for supported formats.
   // Then set it on the processor.
   TrackControl tcs[] = p.getTrackControls();
   Format f[] = tcs[0].getSupportedFormats();
   if (f == null || f.length <= 0) {
       System.err.println("The mux does not support the input format: " + tcs[0].getFormat());
       return false;
   }
   tcs[0].setFormat(f[0]);
   System.err.println("Setting the track format to: " + f[0]);
   // We are done with programming the processor.  Let"s just
   // realize it.
   p.realize();
   if (!waitForState(p, p.Realized)) {
       System.err.println("Failed to realize the processor.");
       return false;
   }
   // Now, we"ll need to create a DataSink.
   DataSink dsink;
   if ((dsink = createDataSink(p, outML)) == null) {
       System.err.println("Failed to create a DataSink for the given output MediaLocator: " + outML);
       return false;
   }
   dsink.addDataSinkListener(this);
   fileDone = false;
   System.err.println("start processing...");
   // OK, we can now start the actual transcoding.
   try {
       p.start();
       dsink.start();
   } catch (IOException e) {
       System.err.println("IO error during processing");
       return false;
   }
   // Wait for EndOfStream event.
   waitForFileDone();
   // Cleanup.
   try {
       dsink.close();
   } catch (Exception e) {}
   p.removeControllerListener(this);
   System.err.println("...done processing.");
   return true;
   }
   /**
    * Create the DataSink.
    */
   DataSink createDataSink(Processor p, MediaLocator outML) {
   DataSource ds;
   if ((ds = p.getDataOutput()) == null) {
       System.err.println("Something is really wrong: the processor does not have an output DataSource");
       return null;
   }
   DataSink dsink;
   try {
       System.err.println("- create DataSink for: " + outML);
       dsink = Manager.createDataSink(ds, outML);
       dsink.open();
   } catch (Exception e) {
       System.err.println("Cannot create the DataSink: " + e);
       return null;
   }
   return dsink;
   }
   Object waitSync = new Object();
   boolean stateTransitionOK = true;
   /**
    * Block until the processor has transitioned to the given state.
    * Return false if the transition failed.
    */
   boolean waitForState(Processor p, int state) {
   synchronized (waitSync) {
       try {
       while (p.getState() < state && stateTransitionOK)
           waitSync.wait();
       } catch (Exception e) {}
   }
   return stateTransitionOK;
   }
   /**
    * Controller Listener.
    */
   public void controllerUpdate(ControllerEvent evt) {
   if (evt instanceof ConfigureCompleteEvent ||
       evt instanceof RealizeCompleteEvent ||
       evt instanceof PrefetchCompleteEvent) {
       synchronized (waitSync) {
       stateTransitionOK = true;
       waitSync.notifyAll();
       }
   } else if (evt instanceof ResourceUnavailableEvent) {
       synchronized (waitSync) {
       stateTransitionOK = false;
       waitSync.notifyAll();
       }
   } else if (evt instanceof EndOfMediaEvent) {
       evt.getSourceController().stop();
       evt.getSourceController().close();
   }
   }
   Object waitFileSync = new Object();
   boolean fileDone = false;
   boolean fileSuccess = true;
   /**
    * Block until file writing is done. 
    */
   boolean waitForFileDone() {
   synchronized (waitFileSync) {
       try {
       while (!fileDone)
           waitFileSync.wait();
       } catch (Exception e) {}
   }
   return fileSuccess;
   }
   /**
    * Event handler for the file writer.
    */
   public void dataSinkUpdate(DataSinkEvent evt) {
   if (evt instanceof EndOfStreamEvent) {
       synchronized (waitFileSync) {
       fileDone = true;
       waitFileSync.notifyAll();
       }
   } else if (evt instanceof DataSinkErrorEvent) {
       synchronized (waitFileSync) {
       fileDone = true;
       fileSuccess = false;
       waitFileSync.notifyAll();
       }
   }
   }
   public static void main(String args[]) {
   if (args.length == 0)
       prUsage();
   // Parse the arguments.
   int i = 0;
   int width = -1, height = -1, frameRate = 1;
   Vector inputFiles = new Vector();
   String outputURL = null;
   while (i < args.length) {
       if (args[i].equals("-w")) {
       i++;
       if (i >= args.length)
           prUsage();
       width = new Integer(args[i]).intValue();
       } else if (args[i].equals("-h")) {
       i++;
       if (i >= args.length)
           prUsage();
       height = new Integer(args[i]).intValue();
       } else if (args[i].equals("-f")) {
       i++;
       if (i >= args.length)
           prUsage();
       frameRate = new Integer(args[i]).intValue();
       } else if (args[i].equals("-o")) {
       i++;
       if (i >= args.length)
           prUsage();
       outputURL = args[i];
       } else {
           for (int j = 0; j < 120; j++) {
               inputFiles.addElement(args[i]);
           }
       }
       i++;
   }
   if (outputURL == null || inputFiles.size() == 0)
       prUsage();
   // Check for output file extension.
   if (!outputURL.endsWith(".mov") && !outputURL.endsWith(".MOV")) {
       System.err.println("The output file extension should end with a .mov extension");
       prUsage();
   }
   if (width < 0 || height < 0) {
       System.err.println("Please specify the correct image size.");
       prUsage();
   }
   // Check the frame rate.
   if (frameRate < 1)
       frameRate = 1;
   // Generate the output media locators.
   MediaLocator oml;
   if ((oml = createMediaLocator(outputURL)) == null) {
       System.err.println("Cannot build media locator from: " + outputURL);
       System.exit(0);
   }
   JpegImagesToMovie imageToMovie = new JpegImagesToMovie();
   imageToMovie.doIt(width, height, frameRate, inputFiles, oml);
   System.exit(0);
   }
   static void prUsage() {
   System.err.println("Usage: java JpegImagesToMovie -w <width> -h <height> -f <frame rate> -o <output URL> <input JPEG file 1> <input JPEG file 2> ...");
   System.exit(-1);
   }
   /**
    * Create a media locator from the given string.
    */
   static MediaLocator createMediaLocator(String url) {
   MediaLocator ml;
   if (url.indexOf(":") > 0 && (ml = new MediaLocator(url)) != null)
       return ml;
   if (url.startsWith(File.separator)) {
       if ((ml = new MediaLocator("file:" + url)) != null)
       return ml;
   } else {
       String file = "file:" + System.getProperty("user.dir") + File.separator + url;
       if ((ml = new MediaLocator(file)) != null)
       return ml;
   }
   return null;
   }
   ///////////////////////////////////////////////
   //
   // Inner classes.
   ///////////////////////////////////////////////
   /**
    * A DataSource to read from a list of JPEG image files and
    * turn that into a stream of JMF buffers.
    * The DataSource is not seekable or positionable.
    */
   class ImageDataSource extends PullBufferDataSource {
   ImageSourceStream streams[];
   ImageDataSource(int width, int height, int frameRate, Vector images) {
       streams = new ImageSourceStream[1];
       streams[0] = new ImageSourceStream(width, height, frameRate, images);
   }
   public void setLocator(MediaLocator source) {
   }
   public MediaLocator getLocator() {
       return null;
   }
   /**
    * Content type is of RAW since we are sending buffers of video
    * frames without a container format.
    */
   public String getContentType() {
       return ContentDescriptor.RAW;
   }
   public void connect() {
   }
   public void disconnect() {
   }
   public void start() {
   }
   public void stop() {
   }
   /**
    * Return the ImageSourceStreams.
    */
   public PullBufferStream[] getStreams() {
       return streams;
   }
   /**
    * We could have derived the duration from the number of
    * frames and frame rate.  But for the purpose of this program,
    * it"s not necessary.
    */
   public Time getDuration() {
       return DURATION_UNKNOWN;
   }
   public Object[] getControls() {
       return new Object[0];
   }
   public Object getControl(String type) {
       return null;
   }
   }
   /**
    * The source stream to go along with ImageDataSource.
    */
   class ImageSourceStream implements PullBufferStream {
   Vector images;
   int width, height;
   VideoFormat format;
   int nextImage = 0;  // index of the next image to be read.
   boolean ended = false;
   public ImageSourceStream(int width, int height, int frameRate, Vector images) {
       this.width = width;
       this.height = height;
       this.images = images;
       format = new VideoFormat(VideoFormat.JPEG,
               new Dimension(width, height),
               Format.NOT_SPECIFIED,
               Format.byteArray,
               (float)frameRate);
   }
   /**
    * We should never need to block assuming data are read from files.
    */
   public boolean willReadBlock() {
       return false;
   }
   /**
    * This is called from the Processor to read a frame worth
    * of video data.
    */
   public void read(Buffer buf) throws IOException {
       // Check if we"ve finished all the frames.
       if (nextImage >= images.size()) {
       // We are done.  Set EndOfMedia.
       System.err.println("Done reading all images.");
       buf.setEOM(true);
       buf.setOffset(0);
       buf.setLength(0);
       ended = true;
       return;
       }
       String imageFile = (String)images.elementAt(nextImage);
       nextImage++;
       System.err.println("  - reading image file: " + imageFile);
       // Open a random access file for the next image. 
       RandomAccessFile raFile;
       raFile = new RandomAccessFile(imageFile, "r");
       byte data[] = null;
       // Check the input buffer type & size.
       if (buf.getData() instanceof byte[])
       data = (byte[])buf.getData();
       // Check to see the given buffer is big enough for the frame.
       if (data == null || data.length < raFile.length()) {
       data = new byte[(int)raFile.length()];
       buf.setData(data);
       }
       // Read the entire JPEG image from the file.
       raFile.readFully(data, 0, (int)raFile.length());
       System.err.println("    read " + raFile.length() + " bytes.");
       buf.setOffset(0);
       buf.setLength((int)raFile.length());
       buf.setFormat(format);
       buf.setFlags(buf.getFlags() | buf.FLAG_KEY_FRAME);
       // Close the random access file.
       raFile.close();
   }
   /**
    * Return the format of each video frame.  That will be JPEG.
    */
   public Format getFormat() {
       return format;
   }
   public ContentDescriptor getContentDescriptor() {
       return new ContentDescriptor(ContentDescriptor.RAW);
   }
   public long getContentLength() {
       return 0;
   }
   public boolean endOfStream() {
       return ended;
   }
   public Object[] getControls() {
       return new Object[0];
   }
   public Object getControl(String type) {
       return null;
   }
   }

}

 </source>